Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giac ABC vuong tai A va đuong cao AH .Biet AB=15,HC=16.tinh chu vi va dien tich tam giac ABC
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+16\right)=15^2=225\)
\(\Leftrightarrow BH^2+25HB-9HB-225=0\)
=>HB=9(cm)
BC=BH+CH=25(cm)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
C=AB+BC+AC=15+20+25=60(cm)
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)