K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+16\right)=15^2=225\)

\(\Leftrightarrow BH^2+25HB-9HB-225=0\)

=>HB=9(cm)

BC=BH+CH=25(cm)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

C=AB+BC+AC=15+20+25=60(cm)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)

15 tháng 10 2023

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\)

=>HB*HC=4^2=16

mà HB+HC=10cm

nên HB,HC là hai nghiệm của phương trình:

\(x^2-10x+16=0\)

=>(x-8)(x-2)=0

=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)

15 tháng 10 2023

thank you