K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

b: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

=>tan ADH=tan ABD=tan ABC=AC/AB=4/3

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC=HD*HC

25 tháng 9 2023

có ai giải được câu d bài này k?

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

18 tháng 9 2021

Mik ko biết 

29 tháng 10 2023

loading... a) ∆ABC vuông tại A có AH là đường cao

⇒ AH² = BH . CH

= 9 . 16

= 144

⇒ AH = 12 (cm)

BC = BH + CH

= 9 + 16

= 25 (cm)

∆ABC vuông tại A có AH là đường cao

⇒ AB² = BH . BC

= 9 . 25

= 225

⇒ AB = 15 (cm)

AC² = CH . BC

= 16 . 25

= 400

⇒ AC = 20 (cm)

b) Do F là trung điểm AB

⇒ AF = AB : 2 = 15 : 2 = 7,5 (cm)

∆ACF vuông tại A

⇒ tanAFC = AC/AF = 20/7,5 = 8,3

⇒ ∠AFC ≈ 69⁰

c) Do AE ⊥ CF (gt)

⇒ AE là đường cao của ∆ACF

∆ACF vuông tại C có CE là đường cao

⇒ AC² = CE.CF (1)

∆ABC vuông tại A có AH là đường cao

⇒ AC² = BC.CH (2)

Từ (1) và (2) suy ra:

CE.CF = BC.CH

22 tháng 6 2021

d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật

\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)

Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)

\(\Rightarrow MDEN\) là hình thang vuông

Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH 

\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)

Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH 

\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)

\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)

 

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM