Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
=>\(AH=\sqrt{9\cdot25}=15\left(cm\right);AB=\sqrt{9\cdot34}=3\sqrt{34}\left(cm\right);AC=\sqrt{25\cdot34}=5\sqrt{34}\left(cm\right)\)
b: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
ΔHAB vuông tại H có HE là đường cao
nên AE*AB=AH^2
=>AE*3căn 34=15^2
=>\(AE=\dfrac{75}{\sqrt{34}}\left(cm\right)\)
ΔHAC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>\(AF=\dfrac{15^2}{5\sqrt{34}}=\dfrac{45}{\sqrt{34}}\left(cm\right)\)
\(S_{AEHF}=AE\cdot AF=\dfrac{45\cdot75}{34}=\dfrac{3375}{34}\left(cm^2\right)\)
c: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Theo hệ thức lượng trong tam giác vuông ta có
\(15^2=9\cdot BC\)
\(BC=\frac{225}{9}=25\left(cm\right)\)
\(\Rightarrow9+HC=25\Rightarrow HC=16\left(cm\right)\)
Theo định lý Pytago ta có
\(AC=\sqrt{BC^2-AB^2}=\sqrt{400}=20\left(cm\right)\)
Ta có đặt \(\widehat{ABC}=\alpha\)
\(\sin\alpha=\frac{20}{25}=0,8\)
Tới đây mình chịu do kết quả nó hơi kỳ...
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8(cm)
ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)