K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 11 2023

Lời giải:

Gọi $T$ là giao điểm $AK, DE$.
Xét tứ giác $ADHE$ có $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên $ADHE$ là hình chữ nhật.

$\widehat{ADT}=\widehat{ADE}=\widehat{AHE}=90^0-\widehat{EHC}=\widehat{C}(1)$

Mặt khác:

Tam giác $ABC$ vuông tại $A$, $AK$ là đường trung tuyến ứng với cạnh huyền nên $AK=\frac{BC}{2}=BK$

$\Rightarrow ABK$ là tam giác cân tại $K$

$\Rightarrow \widehat{TAD}=\widehat{KAB}=\widehat{KBA}=\widehat{B}(2)$

Từ $(1); (2)\Rightarrow \widehat{ADT}+\widehat{TAD}=\widehat{B}+\widehat{C}=90^0$

$\Rightarrow \widehat{DTA}=180^0-(\widehat{ADT}+\widehat{TAD})=180^0-90^0=90^0$

$\Rightarrow DE\perp AK$ (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 11 2023

Hình vẽ:

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

10 tháng 9 2018

Bạn xem bài làm ở đây:

Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath

27 tháng 9 2018

a)Xét tam giác HAB vuông tại A=>góc HAB=90o - B(1)

Xét tam giác vuông ABC có trung tuyến AM ứng với cạnh huyền BC

=>MA=1/2BC=>MA=MC

=>tam giác CMA cân tại M

=>góc MCD=góc MAC

mà góc MCA=90o-B(Xét tam giác vuông ABC)

=>góc MAC=90o-B(2)

Từ (1) và (2) ta có góc HAB=góc MAC

15 tháng 10 2016

online math cho 0 diem di

12 tháng 12 2020

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB, N∈AC)

\(\widehat{ANH}=90^0\)(HN⊥AC)

\(\widehat{AMH}=90^0\)(HM⊥AB)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 

12 tháng 12 2020

undefined

10 tháng 11 2021

a, Vì \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\) nên AEHD là hcn

Do đó AH=DE

b, Vì \(\widehat{HAB}=\widehat{MCA}\) (cùng phụ \(\widehat{CAH}\))

Mà \(\widehat{MCA}=\widehat{MAC}\) (do \(AM=CM=\dfrac{1}{2}BC\) theo tc trung tuyến ứng ch)

Vậy \(\widehat{HAB}=\widehat{MAC}\)

c, Gọi O là giao AM và DE

Vì AEHD là hcn nên \(\widehat{HAB}=\widehat{ADE}\Rightarrow\widehat{MAC}=\widehat{ADE}\)

Mà \(\widehat{ADE}+\widehat{AED}=90^0\left(\Delta AED\perp A\right)\) nên \(\widehat{MAC}+\widehat{ADE}=90^0\)

Xét tam giác AOE có \(\widehat{AOE}=180^0-\left(\widehat{MAC}+\widehat{ADE}\right)=90^0\)

Vậy AM⊥DE tại O