K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDBC có E,F lần lượt là trung điểm của BD,BC

nên EF là đường trung bình

=>EF//AC

Xét ΔDBC có G,E lần lượt là trung điểm của DC,DB

nên GE là đường trung bình

=>GE=BC/2(1)

TA có: ΔABC vuông tại A

mà AF là đường trung tuyến

nên AF=BC/2(2)

Từ (1) và (2) suy ra AF=GE

=>AEFG là hình thang cân

27 tháng 9 2018

Thiếu đề bài:gọi E,F,,G,H theo thứ tự là trung điểm của BD,BC,CD,DA

8 tháng 4 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ BDC, ta có:

E là trung điểm của BD (gt)

F là trung điểm của BC (gt)

Suy ra EF là đường trung bình của tam giác BCD

⇒ EF // DC hay EF // AG

Suy ra tứ giác AEFG là hình thang

G là trung điểm của DC (gt)

Nên FG là đường trung bình của tam giác BCD

⇒ FG // BD ⇒ ∠ G 1 = ∠ D 1 (đồng vị) (1)

* Trong tam giác ABD vuông tại A có AE là đường trung tuyến ứng với cạnh huyền BD

⇒ AE = ED = 1/2 BD (tính chất tam giác vuông)

Suy ra: tam giác AED cân tại E nên  ∠ A 1  =  ∠   D 1  (2)

Từ (1) và (2) suy ra:  ∠ A 1 =  ∠ G 1

Vậy hình thang AEFG là hình thang cân.

30 tháng 6 2017

Hình chữ nhật

20 tháng 3 2020

Link ảnh: https://imgur.com/a/fYvijKU

Vì EF là đường trung bình của tam giác BDC nên EF//DC

Do đó: AEFG là hình thang

Do FG là đường trung bình của tam giác BDC nên FG//BD 

=> \(\widehat{G_1}=\widehat{D_1}\)(đồng vị)

Tam giác ABD vuông tại A có AE là trung tuyến nên \(AE=\frac{BD}{2}=ED\)

Do đó tam giác AED cân tại E => \(\widehat{A_1}=\widehat{D_1}\)

Từ đó: \(\widehat{G_1}=\widehat{A_1}\)

Hình thang AEFG có 2 góc kề 1 đáy bằng nhau nên là hình thang cân (đpcm)

Nguồn: Nguyễn Nhật Minh (h.vn)

11 tháng 12 2021

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{NAM}=90^0\)

Do đó: AMDN là hình chữ nhật