Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
Suy ra: AD=MN
a: Xet tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: AB+AC=30
\(AB^2+AC^2=400\)
=>(30-AC)^2+AC^2=400
=>2AC^2-60AC+900-400=0
=>2AC^2-60AC+500=0
=>Không tồn tại AB,AC thỏa mãn yêu cầu đề bài
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
a) xét tứ giác AMDN có
MAN = 90độ (ABC vuông tại A)
DMA = 90độ (DM vuông góc AB,M thuộc AB)
DNA = 90độ (DN vuông góc AC,N thuộc AC)
⇒Tứ giác AMDN là hình chữ nhật (T/c)
⇒AD=MN(T/c hình chữ nhật)(đpcm)
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
=>AD=MN
b: Gọi O là giao điểm của AD và MN
Vì AMDN là hình chữ nhật
nên AD cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AD và MN
Ta có: AD=MN
\(OA=OD=\dfrac{AD}{2}\)
\(OM=ON=\dfrac{MN}{2}\)
Do đó: OA=OD=OM=ON=AD/2=MN/2
Ta có: ΔHAD vuông tại H
mà HO là đường trung tuyến
nên \(HO=\dfrac{AD}{2}\)
mà AD=MN
nên \(HO=\dfrac{MN}{2}\)
Xét ΔNMH có
HO là đường trung tuyến
\(HO=\dfrac{MN}{2}\)
Do đó: ΔNHM vuông tại H
=>\(\widehat{MHN}=90^0\)