K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH và EA=EH

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có 

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

=>ΔBKC cân tại B

mà BE là đường phân giác

nên BE là đường cao

b: Ta có: AE=EH

mà EH<EC

nên AE<EC

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có 

EA=EH(cmt)

\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)

Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)

Suy ra: EK=EC(hai cạnh tương ứng) và AK=HC(Hai cạnh tương ứng)

Ta có: BK=BA+AK

BC=BH+HC

mà BA=BH(cmt)

và AK=HC(cmt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EK=EC(cmt)

nên E nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của KC

hay BE\(\perp\)KC

b) Ta có: EA=EH(cmt)

mà EH<EC

nên EA<EC

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

Suy ra: BA=BH và EA=EH

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có 

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: EK=EC và AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

Ta có: BK=BC

nên B nằm trên đường trung trực của KC(1)

Ta có: EK=EC

nên E nằm trên đường trung trực của KC\(\left(2\right)\)

Từ (1) và \(\left(2\right)\) suy ra BE là đường trung trực của KC

hay BE\(\perp\)KC

b: Ta có: AE=EH

mà EH<EC

nên AE<CE

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH và EA=EH

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: EK=EC và AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

=>ΔBKC cân tại B

mà BE là đường phân giác

nên BE là đường cao

b: Ta có: AE=EH

mà EH<EC

nên AE<EC

c: Sao cho gì bạn ơi?

a: Xét ΔBEA vuông tại A và ΔBEH vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBEA=ΔBEH

Suy ra: AE=HE

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

DO đó:ΔAEK=ΔHEC
SUy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B

mà BE là đường phân giác

nên BE là đường cao

b: Ta có: AE=EH

mà EH<EC

nên AE<EC

22 tháng 5 2021

A B C E H K 1 2 1 1 2 2 1 2

a) Xét \(\Delta ABE\) và \(\Delta BEH\) có:

\(\widehat{A_1}=\widehat{H_1}=90^o\)

BE cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) (vì BE là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)

\(\Rightarrow AE=EH\) (2 cạnh tương ứng)   (đpcm)

b) Xét \(\Delta CEH\) và \(\Delta AEK\) có:

\(\widehat{A_2}=\widehat{H_2}\left(=90^o\right)\)

AE = EH (cmt)

\(\widehat{E_1}=\widehat{E_2}\) (2 góc đối đỉnh)

\(\Rightarrow\Delta AEK=\Delta HEC\left(g.c.g\right)\)

\(\Rightarrow EK=CE\) (2 cạnh tương ứng)   (đpcm)

c) Ta có: CH = AK (vì \(\Delta AEK=\Delta HEC\))

              AB = BH (vì \(\Delta ABE=\Delta HBE\))

\(\Rightarrow AB+AK=BH+CH\)

\(\Rightarrow BK=BC\)

\(\Rightarrow\Delta BCK\) cân tại B

Lại có: BE là tia phân giác của \(\widehat{B}\)

\(\Rightarrow\)BE là đường phân giác đồng thời là đường cao của \(\Delta BCK\)

\(\Rightarrow BE\perp CK\)   (đpcm)

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng