Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH(cmt)
\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)
Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)
Suy ra: EK=EC(hai cạnh tương ứng) và AK=HC(Hai cạnh tương ứng)
Ta có: BK=BA+AK
BC=BH+HC
mà BA=BH(cmt)
và AK=HC(cmt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EK=EC(cmt)
nên E nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BE là đường trung trực của KC
hay BE\(\perp\)KC
b) Ta có: EA=EH(cmt)
mà EH<EC
nên EA<EC
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
Suy ra: BA=BH và EA=EH
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC và AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
Ta có: BK=BC
nên B nằm trên đường trung trực của KC(1)
Ta có: EK=EC
nên E nằm trên đường trung trực của KC\(\left(2\right)\)
Từ (1) và \(\left(2\right)\) suy ra BE là đường trung trực của KC
hay BE\(\perp\)KC
b: Ta có: AE=EH
mà EH<EC
nên AE<CE
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC và AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
=>ΔBKC cân tại B
mà BE là đường phân giác
nên BE là đường cao
b: Ta có: AE=EH
mà EH<EC
nên AE<EC
c: Sao cho gì bạn ơi?
a: Xét ΔBEA vuông tại A và ΔBEH vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBEA=ΔBEH
Suy ra: AE=HE
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
DO đó:ΔAEK=ΔHEC
SUy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
mà BE là đường phân giác
nên BE là đường cao
b: Ta có: AE=EH
mà EH<EC
nên AE<EC
A B C E H K 1 2 1 1 2 2 1 2
a) Xét \(\Delta ABE\) và \(\Delta BEH\) có:
\(\widehat{A_1}=\widehat{H_1}=90^o\)
BE cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) (vì BE là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)
\(\Rightarrow AE=EH\) (2 cạnh tương ứng) (đpcm)
b) Xét \(\Delta CEH\) và \(\Delta AEK\) có:
\(\widehat{A_2}=\widehat{H_2}\left(=90^o\right)\)
AE = EH (cmt)
\(\widehat{E_1}=\widehat{E_2}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta AEK=\Delta HEC\left(g.c.g\right)\)
\(\Rightarrow EK=CE\) (2 cạnh tương ứng) (đpcm)
c) Ta có: CH = AK (vì \(\Delta AEK=\Delta HEC\))
AB = BH (vì \(\Delta ABE=\Delta HBE\))
\(\Rightarrow AB+AK=BH+CH\)
\(\Rightarrow BK=BC\)
\(\Rightarrow\Delta BCK\) cân tại B
Lại có: BE là tia phân giác của \(\widehat{B}\)
\(\Rightarrow\)BE là đường phân giác đồng thời là đường cao của \(\Delta BCK\)
\(\Rightarrow BE\perp CK\) (đpcm)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
=>ΔBKC cân tại B
mà BE là đường phân giác
nên BE là đường cao
b: Ta có: AE=EH
mà EH<EC
nên AE<EC