Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
a: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có
BI chung
BA=BE
=>ΔBAI=ΔBEI
=>IA=IE
b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có
IA=IE
góc AIF=góc EIC
=>ΔIAF=ΔIEC
=>IF=IC và AF=EC
c: BA+AF=BF
BE+EC=BC
BA=BE; AF=EC
nên BF=BC
mà IF=IC
nên BI là trung trực của CF
=>BI vuông góc CF
Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)
\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Vậy: \(\widehat{ACB}=30^0\)
b) Xét ΔADB và ΔEDB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔADB=ΔEDB(c-g-c)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
c) Ta có: BE+EC=BC(E nằm giữa B và C)
BA+AM=BM(A nằm giữa B và M)
mà BE=BA(ΔBED=ΔBAD)
và BC=BM(gt)
nên EC=AM
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔDAB=ΔDEB)
AM=EC(cmt)
Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)
nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADM}+\widehat{ADE}=180^0\)
\(\Leftrightarrow\widehat{EDM}=180^0\)
hay E,D,M thẳng hàng(đpcm)
2:
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF
b: Xét ΔABC có góc B=góc C
nên ΔABC cân tại A
ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường trung trực của BC
Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Sửa đề; F là trung điểm của DN
Xét ΔADM có
AE vừa là đường cao, vừa là trung tuyến
=>ΔADM cân tại A
=>AD=AM
Xét ΔADN có
AF vừa là đường cao, vừa là trung tuyến
=>ΔADN cân tại A
=>AN=AD
=>AM=AN
a. Ta có: tg BEC cân tại B( do BE=BC) có góc EBC=60độ => Tg BEC đều
b. BI là phân giác góc ABC => góc ABI = góc IBC = 30độ (=góc ACB)
=> tg BIC cân tại I => IB=IC
Lại có: tg ABC vuông tại A có góc ACB=30độ => AB=1/2 BC => AB=1/2 BE => AB=AE
=> tg BAI = tg EAI (c-g-c) => BI=EI
=> EI=IC
c, tg BAI = tg EAI (c-g-c) => góc AEI = góc ABI = 30độ
=> góc AEI + góc ABC = 30 độ + 60độ = 90độ => EI vuông góc BC
d. Ta có IB=IC => IA + IB = IA+IC =AC <BC (cạnh gv <cạnh huyền)