Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có \(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)
Vậy \(\widehat{HAB}=30^0\)
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)
Vậy : \(\widehat{HAB}=30^0\)
a) Xét tam giác AHB (H=90*) va tam giác AHD (H=90*) co:
HB=HD ( gt)
AH chung
=> tam giác AHB=tam giác AHD
hok ngu toan mấy câu còn lại không biết làm
A B C E D K H - - + + I
a) Xét △AHI và △ADI có:
AH = AD (gt)
AI: chung
IH = ID (I: trung điểm HD)
=> △AHI = △ADI (c.c.c)
b) Xét △HAC có: HAC + AHC + HCA = 180o (định lí tổng ba góc △)
=> HAC = 180o - AHC - HCA
=> HAC = 180o - 90o - 30o
=> HAC = 60o (1)
Vì △AHI = △ADI => AH = AD (2 cạnh tương ứng) (2)
Từ (1) và (2) => △ADH đều
c) Vì △AHI = △ADI => IAH = IAD (2 góc tương ứng)
Hay KAH = KAD
Xét △AHK và △ADK có:
AH = AD (cmt)
KAH = KAD (cmt)
AK: chung
=> △AHK = △ADK (c.g.c)
=> AHK = ADK (2 góc tương ứng)
=> ADK = 90o
=> DK \(\perp\) AD (*)
Lại có BAD = 90o => AB \(\perp\) AD (**)
Từ (*) và (**) => AB // DK
d) Vì △HAD đều => HAD = 60o
Mà KAH = KAD (cmt) => KAD = 30o
Xét △KAD có: KAD = KCA (= 30o)
=> △KAC cân tại K
Mà KD \(\perp\)AC
=> KD là đường cao △KAC cũng vừa là đường trung trực
Vậy khi đó thì DA = DC
Mà AH = AD => AH = DC
Lại có HA = HE và AH = DC => HE = DC
Xét △KEH và △KCD có:
EHK = CDK (= 90o)
KH = KD (△KAH = △KAD)
HE = DC (cmt)
=> △KEH = △KCD (2cgv)
=> EKH = CKD (2 góc tương ứng)
Có: EKH + EKC = 180o
=> CKD + CKE = 180o
=> EKD = 180o
=> E, K, D thẳng hàng
a) Xét ΔABH vuông tại H và ΔADH vuông tại H có
AH chung
BH=DH(gt)
Do đó: ΔABH=ΔADH(hai cạnh góc vuông)
Suy ra: AB=AD(hai cạnh tương ứng)
Xét ΔABD có AB=AD(cmt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)(gt)
nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)