K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
 

19 tháng 2 2019

A B C

Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc

AB2+AC2=BC2=2601(1)

Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)

\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)

Thay vào (1) ta đc

\(AB^2+\frac{AB^2.225}{64}=2601\)

\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)

\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)

Vậy ........

b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)

tk mk nhé

Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )

Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)

\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)

\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)

Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)

Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

6 tháng 3 2016

chu vi tam giác ABC là 36cm

8 tháng 2 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(C_{ABC}=6+8+10=24cm\)

b. xét tam giác vuông ABD và tam giác vuông BDM, có:

B : góc chung

AD: cạnh chung

Vậy  tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )

 

8 tháng 2 2022

có vẽ hình nha mọi người