Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tạm.
Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K
Dễ dàng ∆ABM = ∆FCM (c.g.c)
=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC
Mà 2 góc này ở vị trí slt.
=> AB // FC.
=>^BAC + ^ACF = 180° (tcp).
Lại có:
^EAC = ^DAB = 90°
=> ^EAC + ^DAB = 180°
=> ^EAB + ^BAC + ^BAC + CAD = 180°
=> ^BAC + ^EAD = 180°
Do đó ^EAD = ^ACF.
Xét ∆ACF và ∆EAD có:
AC = AE (GT)
^ACF = ^EAD
^CF = AD (=AB)
=>∆ACF = ∆EAD (c.g.c)
=> ^CAK = ^AED (2 góc t/ứ)
=> ^CAM+ ^EAM = ^AED + ^EAM
=> ^AED + ^EAM = ^CAE=90°
=> ^AKE = 90°
=> AM vuông góc vs DE
Mà AH vuông góc DE.
=> Đpcm
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD