Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)
\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)
Vậy: \(AB=4\sqrt{5}cm\); \(AH=\dfrac{8\sqrt{5}}{3}cm\)
c)
Ta có: D và C đối xứng nhau qua A(gt)
nên A là trung điểm của DC
Xét ΔBDC có
BA là đường cao ứng với cạnh DC(BA⊥DC)
BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC)
Do đó: ΔBDC cân tại B(Định lí tam giác cân)
⇒\(\widehat{D}=\widehat{C}\)
Xét ΔADE vuông tại E và ΔACH vuông tại H có
AD=AC(A là trung điểm của DC)
\(\widehat{D}=\widehat{C}\)(cmt)
Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)
⇒AE=AH(hai cạnh tương ứng)
mà AH là bán kính của đường tròn (A;AH)
nên AE là bán kính của đường tròn (A;AH)
Xét (A;AH) có
AE là bán kính(cmt)
AE⊥BD tại E(gt)
Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MB
=>ΔMAB cân tại M
tan BAM=tan B=AC/AB=21/20