Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BH = 18 cm ; MH = 7 cm ; MC = 25 cm ; AH = 24 cm. Chỉ có đáp án thôi nha!
a, Ta có : \(AB=\frac{2}{3}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{144}=\frac{1}{\left(\frac{2}{3}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=6\sqrt{13}\)cm
=> \(AB=\frac{2}{3}.6\sqrt{13}=4\sqrt{13}\)cm
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=8\)cm
Theo định lí Pytago tam giác AHC vuông tại H
\(CH=\sqrt{AC^2-AH^2}=18\)cm
=> BC = HB + HC = 8 + 18 = 26 cm
b, Vì AM là đường trung tuyến tam giác ABC => BM = MC = BC / 2 = 13 cm
Ta có : BH + MH = BM => MH = BM - BH = 13 - 8 = 5 cm
a: Ta có: \(AB=\dfrac{2}{3}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{4}{9}\)
\(\Leftrightarrow HB=\dfrac{4}{9}HC\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=144\)
\(\Leftrightarrow HC^2=324\)
\(\Leftrightarrow HC=18\left(cm\right)\)
\(\Leftrightarrow HB=8\left(cm\right)\)
\(\Leftrightarrow AB=\sqrt{8\cdot26}=4\sqrt{13}\left(cm\right)\)
a: \(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{30\cdot40}{50}=24\left(cm\right)\)
b: \(BH=\dfrac{AB^2}{BC}=\dfrac{30^2}{50}=18\left(cm\right)\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=MC=MB=BC/2=25(cm)
c: \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
Áp dụng định lý Pytago cho ABH vuông tại A có:
Áp dụng hệ thức lượng trong ∆ ABC vuông tại A có đường cao AH ta có:
Vì AM là đường trung tuyến M là trung điểm BC
Ta có: MH = BM – BH = 25 – 18 = 7 cm
Đáp án cần chọn là: A