Cho tam giác ABC vuông tại A có BC=8cm, CA=4√2cm, tìm các cạnh và các góc còn lại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH=8.2=16\Rightarrow AH=4\)cm 

Áp dụng định lí Pytago tam giác ABH vuông tại H : 

\(AB^2=BH^2+AH^2=4+16=20\Rightarrow AB=2\sqrt{5}\)cm 

-> BC = BH + CH = 8 + 2 = 10 cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=100-20=80\Rightarrow AC=4\sqrt{5}\)cm 

* sinB = AC/BC = \(\frac{4\sqrt{5}}{10}=\frac{2\sqrt{5}}{5}\)

cosB = AB/BC = \(\frac{2\sqrt{5}}{10}=\frac{\sqrt{5}}{5}\)

tanB = AC/AB = \(\frac{4\sqrt{5}}{2\sqrt{5}}=2\)

cotaB = AB/AC \(\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

25 tháng 7 2017

Bạn kể thêm đường cao và đặt ẩn là làm ra

NV
26 tháng 7 2021

Áp dụng hệ thức lượng:

\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=4\left(cm\right)\)

\(BC=BH+CH=10\left(cm\right)\)

Hệ thức lượng:

\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{CH.BC}=4\sqrt[]{5}\) (cm)

\(sinB=\dfrac{AC}{BC}=\dfrac{2\sqrt{5}}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)

\(tanB=\dfrac{AC}{AB}=2\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=2+8=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=2\cdot8=16\)

hay AH=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=2\cdot10=20\\AC^2=8\cdot10=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4\sqrt{5}}{10}=\dfrac{2\sqrt{5}}{5}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2\sqrt{5}}{10}=\dfrac{\sqrt{5}}{5}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{4\sqrt{5}}{2\sqrt{5}}=2\)

\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{2\sqrt{5}}{4\sqrt{5}}=\dfrac{1}{2}\)

12 tháng 10 2021

Ta có:ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=54^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin36^0\)

nên \(AB\simeq4,11\left(cm\right)\)

\(\Leftrightarrow AC\simeq5,67\left(cm\right)\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o