Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đo: ΔCAD cân tại C
hay CA=CD
Xét ΔBAD có
BH là đườg cao
BH là đường trung tuyến
Do đo:ΔBAD cân tại B
Xét ΔCAB và ΔCDB có
CA=CD
AB=DB
CB chung
Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)
hay ΔBDC vuông tại D
c: Xét ΔDAE có
C là trung điểm của DE
H là trung điểm của DA
DO đó:CH là đường trung bình
=>CH//AE
hay AE//BC
a, Áp dụng định lý Py-ta-go ta có :
\(^{BC^2=AB^2+AC^2}\)
Mà BC = 10cm
=> \(100cm=AB^2+AC^2\)
Ta co AB tỉ lệ với 3 ; AC tỉ lệ với 4
=> AB thuộc bội của 3 => AB^2 vừa là số chính phương , vừa là bôi của 3 (1)
AC thuộc bội của 4 => AC^2 vừa là số chính phương , vừa là bội của 4 (2)
Từ (1;2) ta có độ dài của hai cạnh AB và AC là hai số chính phương nhỏ hơn 100 và có tổng là 100
Các số chính phương nhỏ hơn 100 có 4 ; 9 ; 16 ; 25;
36 ; 49 ; 64 ; 81.
Ta thấy trong dãy trên có 81+9 và 36+64 có tổng bằng 100 => hai cạnh góc vuông là ...
do bận nên mình làm mỗi ý a , bạn tự làm nốt
a: Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đo: ΔCAD cân tại C
hay CA=CD
Xét ΔBAD có
BH là đườg cao
BH là đường trung tuyến
Do đo:ΔBAD cân tại B
Xét ΔCAB và ΔCDB có
CA=CD
AB=DB
CB chung
Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)
hay ΔBDC vuông tại D
c: Xét ΔDAE có
C là trung điểm của DE
H là trung điểm của DA
DO đó:CH là đường trung bình
=>CH//AE
hay AE//BC
a: Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đo: ΔCAD cân tại C
hay CA=CD
Xét ΔBAD có
BH là đườg cao
BH là đường trung tuyến
Do đo:ΔBAD cân tại B
Xét ΔCAB và ΔCDB có
CA=CD
AB=DB
CB chung
Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)
hay ΔBDC vuông tại D
c: Xét ΔDAE có
C là trung điểm của DE
H là trung điểm của DA
DO đó:CH là đường trung bình
=>CH//AE
hay AE//BC
a) Xét tứ giác ACDB có:
+ M là trung điểm của BC (gt).
+ M là trung điểm của AD (MD = MA).
=> Tứ giác ACDB là hinhg bình hành (dhnb).
Mà ^BAC = 90o (Tam giác ABC vuông tại A).
=> Tứ giác ACDB là hình chữ nhật (dhnb).
=> AB // CD và CD \(\perp\) AC (Tính chất hình bình hành).
b) Trên tia đối của HA lấy E sao cho HE = HA (gt).
=> H là trung điểm của AE.
Xét tam giác CAE có:
+ CH là đường cao (CH \(\perp\) AE).
+ CH là đường trung tuyến (H là trung điểm của AE).
=> Tam giác CAE cân tại C.
=> CE = CA (Tính chất tam giác cân).
c) Ta có: CE = CA (cmt).
Mà CA = DB (Tứ giác ACDB là hình chữ nhật).
=> CE = DB (= CA).
d) Xét tam giác ADE có:
+ M là trung điểm của AD (MD = MA).
+ H là trung điểm của AE (gt).
=> MH là đường trung bình.
=> MH // DE (Tính chất đường trung bình trong tam giác).
Mà MH \(\perp\) AE (do AH \(\perp\) BC).
=> DE \(\perp\) AE (đpcm).
sao a) bắt chứng minh BD//AC rồi c) lại bắt AC cắt DB tại M, đã song song rồi thì cắt nhau kiểu gì -.- xem lại đi nha
a)xét tam giác ABM và tam giác DCM có:
BN=CM(GT)
góc BMA=góc CMD(đđ)
AM-DM(GT)
\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)
b)theo câu a: tam giác ABM=tam giác DCM
\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)
mà đây là cặp góc so le trong
\(\Rightarrow\)AB//CD
\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC
c) xét tam giác AHC và tam giác EHC có:
AH=EH(GT)
góc AHC=góc EHC=90 độ
HC chung
\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)
\(\Rightarrow\)CA=CE(2 cạnh tương ứng)
\(\Rightarrow\)tam giác CAE cân tại C
hơi dơ...
Chữ hơi xấu