K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

bài này là tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông.

Để chứng minh tính chất này, bạn cần dùng kiến thức hình chữ nhật. 

Hoặc dùng kiến thức đường trung bình cũng được, như trong bài toán này.

Hình bạn tự vẽ nhe.

Giai.

a) Xét t/g CAB có MN là đường trung bình nên MN//BA, mà BA vuông góc AC(vì t/g ABC vuông)

nên MN v/g với AC.

b) Xét hai tg vuông MNA(N=90)  và MNC (N=90) có

NA=NC(giả thiết)

MN là cạnh chung

Do đó: tg MNA= MNC  (2 cạnh góc vuông)

suy ra MA=MC

mà MC=MB(vì M là trung điểm BC)

Vậy AM=BC:2 hay 2AM=BC

31 tháng 8 2021

a) Xét tam giác ABC có:

M là trung điểm của BC( AM là đường trung tuyến tam giác ABC)

N là trung điểm của AC(gt)

=> MN là đường trung bình của tam giác ABC

=> MN//AB

Mà AB⊥AC(tam giác ABC vuông tại A)
=> MN⊥AC(từ vuông góc đến song song)

b) Xét tam giác AMC có:

MN là đường cao ứng với cạnh AC(MN⊥AC)

MN là đường trung tuyến ứng với cạnh AC(N là trung điểm AC)

=> Tam giác AMC cân tại M

c) Ta có: Tam giác AMC cân tại M

=> AM=MC

Mà BM=MC=\(\dfrac{1}{2}BC\)( M là trung điểm BC)

=> \(AM=\dfrac{1}{2}BC\)

\(\Rightarrow2AM=BC\)

31 tháng 8 2021

Đề bài sai rồi bạn

20 tháng 5 2020

Đề bài của bn bị thiếu à?

Cho tam giác ABC vuông tai A (AB ?

3 tháng 2 2020

1, tam giác ABC cân tại A (gt)

AM là đường trung tuyến

=> AM đồng thời là phân giác của góc BAC(đl)

=> góc CAM = góc BAM (đn)

có góc CAM + góc BAM = góc BAC 

có CAM = 30 (gt)

=> góc BAC = 60 

tam giác ABC cân tại A (gT) => góc ACB = (180 - BAC) : 2  (tính chất)

=> góc ACB = 60 

=> tam giác ABC đều

=>  AC = BC (đn)

11 tháng 11 2023

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(MA=MC=MB=\dfrac{BC}{2}\)

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

b: Xét ΔABC có

M là trung điểm của CB

MH//AB

Do đó: H là trung điểm của AC

Xét tứ giác AMCD có

H là trung điểm chung của AC và MD

nên AMCD là hình bình hành

Hình bình hành AMCD có MA=MC

nên AMCD là hình thoi

c: Để AMCD là hình vuông thì \(\widehat{MCD}=90^0\)

AMCD là hình thoi

=>AC là phân giác của \(\widehat{MAD}\) và CA là phân giác của \(\widehat{MCD}\)

=>\(\widehat{MCA}=\dfrac{1}{2}\cdot\widehat{BAC}=45^0\)

=>\(\widehat{ACB}=45^0\)