Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Pytago:
\(BC^2=AB^2+AC^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
Áp dụng tslg:
\(cosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)
b) Áp dụng HTL :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\sqrt{\dfrac{1}{\dfrac{1}{AB^2}}+\dfrac{1}{\dfrac{1}{AC^2}}}=\sqrt{\dfrac{1}{\dfrac{1}{6^2}+\dfrac{1}{8^2}}}=4,8\left(cm\right)\)
Áp dụng tslg:
\(cosBAH=\dfrac{AH}{AB}=\dfrac{4,8}{6}\Rightarrow\widehat{BAH}\approx37^0\)
Lời giải:
Ta có: $\tan B=\frac{AC}{AB}=\frac{10}{6}=\frac{5}{3}$
$\Rightarrow \widehat{B}=59,04^0$
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
\(sinB=\dfrac{AC}{BC}\approx37^0\)
Chọn B
B.37o