K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

 

Ban xem o dinh li pita go phan hinh hoc ay BC= 10 CM TICK NHE

 

 

7 tháng 1 2016

tích đi giải cho

 

21 tháng 3 2017

10 tháng 12 2018

a. Áp dụng định lí Pytago trong tam giác ABC ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100 ⇒ BC = 10cm

3 tháng 4 2020

a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!

a: BC=căn 6^2+8^2=10cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

góc ABK=góc HBK

=>ΔBAK=ΔBHK

c: Xét ΔKAI vuông tại A và ΔKHC vuông tại H có

KA=KH

AI=HC

=>ΔKAI=ΔKHC

=>góc AKI=góc HKC

=>góc AKI+góc AKH=180 độ

=>I,K,H thẳng hàng

d: Xét ΔBIC có BA/AI=BH/HC

nên AH//IC

15 tháng 3 2022

undefined

15 tháng 3 2022

d)của bài khác nha

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

c Xét ΔBHF vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBF chung

=>ΔBHF=ΔBAC

=>BF=BC

mà góc FBC=60 độ

nên ΔBFC đều

10 tháng 6 2020

Tự vẽ hình nha !!!

a) Áp dụng định lý Py-ta-go ta có 

AB2 + AC2 = BC2

=> 82 + 62 = BC2

=> BC = 10 cm

b) Ta có BA = AD

=> AC là trung tuyến của BD

Vì \(AC\Omega BK=\left\{E\right\}\)

=> E là trọng tâm của tam giác BDC

=> \(\frac{EC}{AC}=\frac{2}{3};\frac{AE}{AC}=\frac{1}{3}\)mà AC = 6 cm

=> EC = 4 cm ; AE = 2 cm

c) Xét tam giác BAC và tam giác DAC có

\(\hept{\begin{cases}BA=AD\\\widehat{CAB}=\widehat{CAD=90^{\text{o}}}\\AC\text{ chung}\end{cases}}\Rightarrow\Delta BAC=\Delta DAC\left(c.g.c\right)\)

=> BC = DC (cạnh tương ứng)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)