K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2022

a) Ta có \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

\(\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\) vuông tại \(A\)

b) Xét \(\Delta BMK\) và \(\Delta CMK\) có:

\(\widehat{BKM}=\widehat{CKM}=90^0\) (gt)

\(BK=CK\) (gt)

\(KM\) chung

\(\Rightarrow\Delta BKM=\Delta CKM\) (c.g.c) \(\Rightarrow BM=CM\)

Xét \(\Delta ABM\) và \(\Delta DCM\) có:

\(\widehat{A}=\widehat{D}=90^0\)

\(MB=MC\) (đã chứng minh)

\(\widehat{AMB}=\widehat{DMC}\) (hai góc đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta DCM\) (ch-gn) \(\Rightarrow AB=DC\) (hai cạnh tương ứng)

c) Gọi \(AB\cap CD=I\)

Tam giác \(IBC\) có \(\left\{{}\begin{matrix}CA\perp BI\\BD\perp CI\\CA\cap BD=M\end{matrix}\right.\Rightarrow M\) là trực tâm tam giác \(BCI\)

\(\Rightarrow IM\perp BC\) mà \(KM\perp BC\Rightarrow I\in KM\)

Vậy \(AB,CD,KM\) đồng quy tại \(I\)

 

6 tháng 5 2022

:)

6 tháng 5 2022

Cậu tự vẽ hình
a. Xét tg ABC có: 
BC2= 102=100
AB2 + AC2= 62 + 82 = 36 + 64 = 100
=> BC2=AB2 + AC2
=> Tam giác ABC vuông tại A (định lý Py-ta-go đảo)

b. Xét △BKM và △CKD vuông tại K có: 
MK chung
BK=KC (K là trung điểm BC)
=> △BKM = △CKD (2cgv)
=> BM=CM (2 cạnh tương ứng)
Xét △DMC vuông tại D và △AMB vuông tại A có:
MB=CM (cmt)
góc BMC chung
=> △DMC = △AMB (ch-gn)
=> AB=DC (2 cạnh tương ứng)

7 tháng 5 2022

thank

7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs

1:

a: \(BC=\sqrt{6^2+8^2}=10cm\)

=>AM=10/2=5cm

b: Xét ΔEBC có

EM vừa là đường cao, vừa là trung tuyến

=>ΔEBC cân tại E

Bài 2:

Xét ΔBAE vuông tại A và ΔBHE vuông tại H co

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH và EA=EH

=>BE là trung trực của AH

c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)