Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)
b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:
\(BMchung.\)
\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).
\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)
\(\Rightarrow AB=KB.\)
\(\Rightarrow\Delta ABK\) cân tại B.
c) Xét \(\Delta ABK\) cân tại B:
\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)
Xét \(\Delta BDC:\)
DK là đường cao \(\left(DC\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
Mà M là giao điểm của DK và CA.
\(\Rightarrow\) M là trực tâm.
\(\Rightarrow\) BM là đường cao.
Xét \(\Delta DBC:\)
BM là đường cao (cmt).
BM là đường phân giác (gt).
\(\Rightarrow\Delta DBC\) cân tại B.
\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)
Từ (1) (2) \(\Rightarrow\text{}\text{}\widehat{AKB}=\widehat{DCB}.\)
\(\Rightarrow AK//CD.\)
a) Xét ΔABCΔABC vuông tại A:
BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).
b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:
BMchung.BMchung.
ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).
⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).
⇒AB=KB.⇒AB=KB.
⇒ΔABK⇒ΔABK cân tại B.
c) Xét ΔABKΔABK cân tại B:
ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).
Xét ΔBDC:ΔBDC:
DK là đường cao (DC⊥BC).(DC⊥BC).
CA là đường cao (CA⊥AB).(CA⊥AB).
Mà M là giao điểm của DK và CA.
⇒⇒ M là trực tâm.
⇒⇒ BM là đường cao.
Xét ΔDBC:ΔDBC:
BM là đường cao (cmt).
BM là đường phân giác (gt).
⇒ΔDBC⇒ΔDBC cân tại B.
ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).
Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒AKB^=DCB^.
⇒AK//CD.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔBAM=ΔBNM
Suy ra: MA=MN
nhớ tk cho ming nha
1, Xét tam giác ABC có :
\(BC^2=AC^2+AB^2\)
\(\Leftrightarrow BC^2=4^2+3^2\)
\(\Leftrightarrow BC^2=25\)
\(\Leftrightarrow BC=5\left(cm\right)\)
2,Ta có :\(\widehat{BMA}+\widehat{MBA}=90^O\)
\(\widehat{BMH}+\widehat{MBH}=90^O\)
MÀ \(\widehat{ABM}=\widehat{HBM}\)
Nên \(\widehat{BMA}=\widehat{BMH}\)
Xét tam giác ABM và tam giác HBM có :
\(\widehat{ABM}=\widehat{HBM}\left(gt\right)\)
\(BMchung\)
\(\widehat{BMA}=\widehat{BMH}\)
\(\Rightarrow\Delta BAM=\Delta BHM\left(c.g.c\right)\)
3,Vì \(\Delta BAM=\Delta BHM\Rightarrow AM=MH\left(1\right)\)
Xét \(\Delta HMC\)có :
\(\widehat{MHC}=90^0\)
Suy ra :MC>MH(2)
Từ (1) và(2):AM<MC
4,Ta có :\(\widehat{AMH}+\widehat{HMC}=180^0\left(1\right)\)
Xét tam giác NMA và tam giác CMH có:
\(HC=NA\)
\(\widehat{NAM}=\widehat{CHM}\)
\(MA=MH\left(\Delta BAM=\Delta BHM\right)\)
\(\Rightarrow\Delta NMA=\Delta CMH\left(c.g.c\right)\)
\(\Rightarrow\widehat{NMA}=\widehat{CMH}\)(2)
Từ (1) và(2) : => N,M,H thẳng hàng
Sửa đề: Tia phân giác góc B cắt AC tại E
a) Xét ΔBAE và ΔBME có
BA=BM(gt)
\(\widehat{ABE}=\widehat{MBE}\)(BE là tia phân giác của \(\widehat{ABM}\))
BE chung
Do đó: ΔBAE=ΔBME(c-g-c)
\(\Leftrightarrow\widehat{BAE}=\widehat{BME}\)(hai góc tương ứng)
mà \(\widehat{BAE}=90^0\)
nên \(\widehat{BME}=90^0\)
hay \(EM\perp BC\)(đpcm)
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
c: \(\widehat{MAH}+\widehat{BHA}=90^0\)
\(\widehat{CAH}+\widehat{BAH}=90^0\)
mà \(\widehat{BHA}=\widehat{BAH}\)
nên \(\widehat{MAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc MAC