K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Áp dụng định lí Pytago vào tam giác vuông ABC ta có:

B C 2 = A B 2 + A C 2 = 6 2 + 8 2 = 100

Suy ra: BC = 10cm

Do M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC

Suy ra:

Bài tập: Đường trung bình của tam giác, của hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

27 tháng 11 2018

16 tháng 10 2023

20 tháng 3 2017

* Ta có:  A B 2 + A C 2 = B C 2 ( 6 2 + 8 2 = 10 2 = 100 )

Suy ra: tam giác ABC vuông tại A

⇒ AB ⊥ AC

* Lại có: MN ⊥ AB nên MN // AC.

* Vì MN // AC và M là trung điểm của BC nên N là trung điểm của AB.

Khi đó, MN là đường trung bình của tam giác ABC .

Bài tập: Đường trung bình của tam giác, của hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

21 tháng 7 2015

Tam giác ABC vuông tại A , theo py ta go :

                  AB^2 = BC^2 - AC ^2 = 10^2 - 8^2 = 36

=> AB = 6 

TAm giác ABC có :  AM = MC (M là tđ AC)

                              BN = NC ( N là tđ BC  )

=> MN là đường trung bình => MN = 1/2 AB = 1/2 . 6 = 3 

                                  

10 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm

 

a: Xét ΔCAB có CN/CA=CP/CB

nên NP//AB và NP=AB/2

=>NP//AM và NP=AM

=>AMPN là hình bình hành

mà góc MAN=90 độ

nên AMPN là hình chữ nhật

b: Xét ΔBCA có AM/AB=AN/AC

nên MN//BC và MN=1/2BC

=>MN//EF và MN=EF

=>MNFE là hình bình hành