Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng đ/lí Py ta go cho tam giác ABC vuông ở A ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
= 100
=> BC = \(\sqrt{100}=10\left(Cm\right)\)
b) Xét tam giác DAH và tam giác BAH có:
AH chung
HD = HB
Góc H1 = góc H2
Vậy tam giác DAH = tam giác BAH
=> AD = AB (2 cạnh tương ứng)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a) xét tam giac ABC vuông tại A ta có
BC2= AB2+AC2 (định lý pitago)
BC2=62+82
BC2=100
BC=10
b) Xét tam giac ABH và tam giac ADH ta có
HB=HD (gt)
AH=AH (cạnh chung)
góc AHB= góc AHD (=90)
-> tam giác ABH= tam giac ADH (c-g-c)
-> AB= AD ( 2 cạnh tương ứng)
c)
Xét tam giac ABHvà tam giac EDH ta có
HB=HD (gt)
AH=EH (gt)
góc AHB= góc EHD (=90)
-> tam giác ABH= tam giac EDH (c-g-c)
-> góc ABH = góc EDH (2 góc tương ứng )
mà 2 góc nằm ở vị trí sole trong
nên AB// ED
lại có AB vuông góc AC ( tam giac ABC vuông tại A)
do đó ED vuông góc AC
a) Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\) ( py- ta - go)
Thay số: 6^2 + 8^2 = BC^2
BC^2 = 100
=> BC = 10 cm
b) ta có: \(AH\perp BD⋮H\)
HD = HB
=> AH là đường trung trực của BD ( định lí đường trung trực)
mà \(A\in BD\)
=> AB = AD ( tính chất đường trung trực)
c) Xét tam giác AHB vuông tại H và tam giác EHD vuông tại H
có: HB = HD (gt)
AH = EH ( gt)
\(\Rightarrow\Delta AHB=\Delta EHD\left(cgv-cgv\right)\)
=> góc HAB = góc HED ( 2 góc tương ứng)
mà góc HAB, góc HED nằm ở vị trí so le trong
\(\Rightarrow AB//ED\)( định lí)
mà \(AB\perp AC⋮A\)(gt)
\(\Rightarrow ED\perp AC\)( định lí)
d) ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{6.8}{2}=\frac{48}{2}=24cm^2\)
mà \(S_{\Delta ABC}=\frac{BC.AH}{2}\)
thay số \(24=\frac{10.AH}{2}=5AH\)
\(\Rightarrow AH=\frac{24}{5}=4,8cm\)
Xét tam giác ABH vuông tại H
có: \(AB^2=BH^2+AH^2\) ( py - ta - go)
thay số: 6^2 = BH^2 + 4,8^2
BH^2 = 6^2 - 4,8^2
BH^2 = 12,96
=> BH = 3,6 cm
mà BH = DH = 3,6 cm ( H thuộc BD) => DH = 3,6 cm
=> BH + DH = BD
thay số: 3,6 + 3,6 = BD
BD = 7,2 cm
mà AH = EH = 4,8 cm ( H thuộc AE) => EH = 4,8 cm
=> AH + EH = AE
thay số: 4,8 + 4,8 = AE
AE = 9,6 cm
=> BD < AE ( 7,2 cm < 9,6 cm )
mk vẽ hình đó ko đc đúng đâu ! thông cảm nha bn !
a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
\(BC^2=AB^2+AC^2\)
hay \(BC^2=6^2+8^2=100\)
\(\Leftrightarrow BC=\sqrt{100}=10cm\)
Vậy: BC=10cm
b) Xét ΔADH vuông tại H và ΔABH vuông tại H có
DH=BH(gt)
AH chung
Do đó: ΔADH=ΔABH(hai cạnh góc vuông)
⇒AD=AB(hai cạnh tương ứng)
Xét ΔADB có AD=AB(cmt)
nên ΔADB cân tại A(định nghĩa tam giác cân)
c) Gọi giao điểm của DE và AC là O
Ta có: AH=HE(gt)
mà A,E,H thẳng hàng
nên H là trung điểm của AE
Ta có: DH=HB(gt)
mà D,H,B thẳng hàng
nên H là trung điểm của DB
Xét tứ giác ADEB có
H là trung điểm của đường chéo DB(cmt)
H là trung điểm của đường chéo AE(cmt)
Do đó: ADEB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒DE//AB(do DE và AB là hai cạnh đối trong hình bình hành ADEB)
mà O∈DE(DE\(\cap\)AB={O})
nên EO//AB
Ta có: EO//AB(cmt)
mà AB⊥AC(do ΔABC vuông tại A)
nên EO⊥AC(định lí 2 về quan hệ giữa vuông góc và song song)
hay DE⊥AC(đpcm)
a, Áp dụng định lý Py-ta-go vào \(\bigtriangleup{ABC}\) vuông tại A , ta có :
AB\(^2\) + \(AC^2=BC^2\)
<=> \(6^2+8^2 =BC^2\)
<=> \(100 = BC^2\)
=> \(BC = 10\) ( cm)
Vậy BC = 10 cm