Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{BC}{2}\)
Ta có: MN//BC
D\(\in\)NM
Do đó; MD//CB
ta có: \(MN=\dfrac{CB}{2}\)
\(MN=\dfrac{MD}{2}\)
Do đó:CB=MD
Xét tứ giác BMDC có
BC//MD
BC=MD
Do đó: BMDC là hình bình hành
b: Xét tứ giác AMCD có
N là trung điểm chung của AC và MD
nên AMCD là hình bình hành
a) Ta có: N là trung điểm của AC ; M là trung điểm của AB
=>MN là đường trung bình của T/Giác ABC
=>MN=1/2*BC
=>MN=1/2*6=3cm
b) Ta có:MN là đường trung bình
=>MN//BC (định lí đường trung bình)
=> TGiác BMNC là hình thang
c)Ta có :EN = NM
Mà NM=3cm
=>NM+NE=6cm
=>EM=BC=6cm
Ta có :EM//CB ( do NM thuộc EM)
EM=BC=6cm
=>Tgiac BMEC là HBH ( dấu hiệu nhận biết)
a: Xét tứ giác BMCD có
N là trung điểm chung của BC và MD
=>BMCD là hình bình hành
b: Ta có: BMCD là hình bình hành
=>BM//CD và BM=CD
Ta có: BM//CD
M\(\in\)AB
Do đó: AM//CD
ta có: BM=CD
AM=MB
Do đó: AM=CD
Xét tứ giác AMDC có
AM//DC
AM=DC
Do đó: AMDC là hình bình hành
Hình bình hành AMDC có \(\widehat{MAC}=90^0\)
nên AMDC là hình chữ nhật
c: Ta có: AMDC là hình chữ nhật
=>\(\widehat{DMA}=90^0\)
=>DM\(\perp\)AB tại M
Xét ΔDBA có
DM là đường cao
DM là đường trung tuyến
Do đó: ΔDBA cân tại D
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét tứ giác MNCB có MN//BC(cmt)
nên MNCB là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
b) Ta có: NM=NE(gt)
mà M,N,E thẳng hàng
nên N là trung điểm của ME
hay \(MN=\dfrac{ME}{2}\)(2)
Từ (1) và (2) suy ra ME=BC
Xét tứ giác MECB có
ME//BC(MN//BC, E∈MN)
ME=BC(cmt)
Do đó: MECB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: ME//BC(MN//BC, E∈MN)
nên \(\widehat{NEF}=\widehat{CBF}\)(hai góc so le trong)
Xét ΔNEF và ΔCBF có
\(\widehat{NEF}=\widehat{CBF}\)(cmt)
\(\widehat{EFN}=\widehat{BFC}\)(hai góc đối đỉnh)
Do đó: ΔNEF∼ΔCBF(g-g)
⇒\(\dfrac{NE}{CB}=\dfrac{NF}{CF}\)(Các cặp cạnh tương ứng tỉ lệ)
⇒\(\dfrac{NF}{CF}=\dfrac{1}{2}\)
hay \(CF=2\cdot NF\)
Ta có: CF+NF=NC(F nằm giữa N và C)
\(\Leftrightarrow2\cdot NF+NF=NC\)
\(\Leftrightarrow NC=2\cdot NF\)
mà \(AC=2\cdot NC\)(N là trung điểm của AC)
nên \(AC=6\cdot NF\)(đpcm)
d) Hình bình hành MECB trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MBC}=90^0\\MB=BC\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\)
Vậy: Khi ΔABC có thêm điều kiện \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\) thì hình bình hành MECB trở thành hình vuông
a)
Tứ giác BMCD có:
N là trung điểm của BC (gt)
NM=ND(gt) => N là trung điểm của MD
=> N là trung điểm của 2 đường chéo MD và BC
=> Tứ giác BMCD là hình bình hành
b)
tam giác ABC có:
M là trung điểm ủa AB (gt)
N là trung điểm của BC (GT)
=> MN là đường trung bình của tam giác ABC
=> MN//AC (tính chất đường trung bình )
Vì MN//AC (cmt) => MD//AC
vì tứ giác BMCD là hình bình hành => BM//CD (tính chất hình bình hành)
vì BM//CD (cmt) => CD//AB => CD//AM
Tứ giác AMDC có:
MD//AC (cmt)
CD//AM (cmt)
góc A vuông (gt)
=> tứ giác AMDC là hình chữ nhật
c)
Vì tứ giác BMCD là hình bình hành => BD = CM ( tính chất hình bình hành )
Vì tứ giác AMDC là hình chữ nhật => 2 đường chéo AD và CM bằng nhau (tính chất hình chữ nhật)
Vì BD = CM và AD = CM => BD = AD (tính chất bắc cầu)
tam giác BDA có:
BD = AD (cmt) (2 cạnh bên)
=> Tam giác BDA cân
Đc r này =))
a: BC=5cm
MN=1,5cm