K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

D ở đâu ra vậy bạn

24 tháng 3 2018

mình cx ko rõ nữa 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)

14 tháng 7 2023

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

Sửa đề: AD là đường phân giác

a) Tính BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{BD}{12}=\dfrac{CD}{16}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{16}=\dfrac{BD+CD}{12+16}=\dfrac{BC}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{12}=\dfrac{5}{7}\\\dfrac{CD}{16}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\left(cm\right)\\CD=\dfrac{80}{7}\left(cm\right)\end{matrix}\right.\)

Vậy: \(BD=\dfrac{60}{7}cm\)\(CD=\dfrac{80}{7}cm\)

a: \(AC=\sqrt{20^2-16^2}=12\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/4=CD/5=(AD+CD)/(4+5)=12/9=4/3

=>AD=16/3cm; CD=20/3cm

b: Xét ΔABD vuông tại A và ΔHCD vuông tại H có

góc ADB=góc HDC

=>ΔABD đồng dạng với ΔHCD

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
a. 

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)

Áp dụng tính chất tia phân giác:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{16}{20}=\frac{4}{5}$

$\Rightarrow \frac{AD}{AD+CD}=\frac{4}{9}$

$\Rightarrow \frac{AD}{AC}=\frac{4}{9}\Rightarrow AD=\frac{4}{9}AC=\frac{4}{9}.12=\frac{16}{3}$ (cm)

$CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}$ (cm)

b.

Xét tam giác $ABD$ và $HCD$ có:

$\widehat{BAD}=\widehat{CHD}=90^0$

$\widehat{BDA}=\widehat{CDH}$ (đối đỉnh)

$\Rightarrow \triangle ABD\sim \triangle HCD$ (g.g)

c.

Từ kết quả tam giác đồng dạng phần b suy ra:
$\frac{S_{HCD}}{S_{ABD}}=(\frac{CD}{BD})^2(*)$

Trong đó:

$CD=\frac{20}{3}$

$BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+(\frac{16}{3})^2}=\frac{16\sqrt{10}}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{S_{HCD}}{S_{ABD}}=\frac{5}{32}$

$\Rightarrow S_{HCD}=\frac{5}{32}S_{ABD}=\frac{5}{32}.\frac{AD}{AC}S_{ABC}$
$=\frac{5}{32}.\frac{16}{3.12}.\frac{AB.AC}{2}$

$=\frac{5}{32}.\frac{4}{9}.\frac{16.12}{2}=\frac{20}{3}$ (cm2)

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

20 tháng 2 2020

Lời giải:
Sử dụng tính chất đường phân giác:

ABAC=BDDC=1520=34(1)ABAC=BDDC=1520=34(1)

Áp dụng định lý Pitago cho tam giác vuông ABCABC:

AB2+AC2=BC2=(BD+DC)2=352=1225(2)AB2+AC2=BC2=(BD+DC)2=352=1225(2)

Từ (1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49(1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49

⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28 (cm)

17 tháng 10 2020

tự mà lm

25 tháng 12 2019

2 tháng 3 2022

a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)

\(BC^2=20^2=400\)(cm)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Xét Δ DNC và Δ ABC có:

\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)

Chung \(\widehat{C}\)

⇒Δ DNC \(\sim\) Δ ABC (g.g)

b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)

Δ DNC \(\sim\) Δ ABC (cma)

\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)

c, Xét Δ DBM và Δ ABC có:

Chung \(\widehat{B}\)

\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)

⇒Δ DBM \(\sim\) Δ ABC(g.g)

\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)

Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M

\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)