Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
A B C H 20 12 5
a, Áp dụng định lí Pytago trong tam giác \(AHB\)có \(\widehat{H}=90^0\)ta có :
\(HA^2+HB^2=AB^2\)
\(AB^2=12^2+5^2=144+25=169\)
\(AB=\sqrt{169}=13cm\)
Áp dụng định lí Pytago trong tam giác \(AHC\)có \(\widehat{H}=90^0\)ta có :
\(HA^2+HC^2=AC^2\)
\(HC^2=AC^2-HA^2\)
\(HC^2=20^2-12^2\)
\(HC^2=400-144=256\)
\(HC=\sqrt{256}=16cm\)
\(H\in BC\)
\(\Rightarrow HB+HC=BC\)
hay \(BC=5+16=21cm\)
b, Chu vi tam giác ABC = \(20+21+13=54cm\)
a, Theo định lí Pytago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=13cm\)
Theo định lí Pytago tam giác ẠHC vuông tại H
\(HC=\sqrt{AC^2-AH^2}=16cm\)
-> BC = HB + HC = 5 + 16 = 21 cm
b, Chu vi tam giác ABC là \(P_{ABC}=AC+AB+BC=21+13+20=54cm\)
Đề dễ thế này cũng nhờ làm hộ à!? :)))))))))
Tam giác ABC vuông tại A
Định lí Pytago: \(BC^2=AB^2+AC^2\)
Suy ra \(10^2=6^2+AC^2\)
=> AC= 8 (cm)
Chu vi tam giác ABC: AB+ BC+ AC= 6 +10 + 8=24 (cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
ta có độ dài AB là : \(\left(17+7\right):2=12cm\)
độ dài AC là : \(12-7=5cm\)
độ dài cạnh BC là : \(BC=\sqrt{12^2+5^2}=13cm\)
Chu vi tam giác ABC là : \(AB+BC+AC=12+5+13=30cm\)
DIện tích tam giác ABC là : \(AB\times\frac{AC}{2}=12\times\frac{5}{2}=30cm^2\)
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
VÌ tam giác vuông nên ta có định lý PY-ta - go :
AB2 + AC2 = BC2
62 + AC2 = 102
AC2 = 102 - 62
= 100 - 36
= 64
=>AC = 8
CHU VI TAM GIÁC ABC : 6 +10 + 8 = 24 CM
VẬY : AC : 8 cm
Chu vi tam giác ABC : 24 cm
, Xét tg ABC và tg HBA có:
góc H = góc A (= 90o)
góc B chung
=> Tg ABC đông dạng với tg HBA