K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì $AB: AC=3:7$ nên đặt $AB=3a; AC=7a$. Áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$

$\frac{1}{42^2}=\frac{1}{(3a)^2}+\frac{1}{(7a)^2}$

$\frac{1}{42^2}=\frac{58}{441a^2}$

$\Rightarrow a=2\sqrt{58}$ (cm) 

$AB=3a=6\sqrt{58}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{(6\sqrt{58})^2-42^2}=18$ (cm)

Chu vi $ABH$: $AB+BH+AH=6\sqrt{58}+18+42=60+6\sqrt{58}$ (cm)

$AC=7a=14\sqrt{58}$ (cm)

$HC=\sqrt{AC^2-AH^2}=\sqrt{(14\sqrt{58})^2-42^2}=98$ (cm)

$S_{AHC}=\frac{AH.HC}{2}=\frac{42.98}{2}=2058$ (cm vuông)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

7 tháng 10 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

\(b,\) Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{9\cdot12}{15}=7,2\left(cm\right)\)

\(c,\) Dễ thấy AEHF là hcn

Do đó \(\widehat{HAF}=\widehat{EFA}\)

Mà \(\widehat{HAF}=\widehat{HBA}\left(cùng.phụ.\widehat{HAB}\right)\)

Do đó \(\widehat{EFA}=\widehat{HBA}\)

Ta có \(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{EFA}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEF\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE\cdot AB=AF\cdot AC\)

\(d,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AH^2=EA\cdot AB\\AH^2=FA\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=\dfrac{AH^2}{AB}=5,76\left(cm\right)\\AF=\dfrac{AH^2}{AC}=4,32\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow S_{AEF}=\dfrac{1}{2}AE\cdot AF=\dfrac{1}{2}\cdot5,76\cdot4,32=12,4416\left(cm^2\right)\)

Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=54\left(cm^2\right)\)

Vậy \(S_{BEFC}=S_{ABC}-S_{AEF}54-12,4416=41,5584\left(cm^2\right)\)

 

 

 

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC và AC^2=CH*BC

=>AB^2/AC^2=BH/CH

b: S AHC=8,64

=>1/2*AH*HC=8,64

=>AH*HC=17,28

S AHB=15,36

=>1/2*AH*HB=15,36

=>AH*HB=30,72

mà AH*HC=17,28

nên AH*AH*HB*HC=30,72*17,28

=>AH^2*AH^2=30,72*17,28

=>AH^4=530,8416

=>\(AH=\sqrt[4]{530.8416}=4.8\left(cm\right)\)

 

4 tháng 8 2023

Bạn làm câu c) giúp mình được không

3 tháng 6 2021

xét tam giác ABC vuông tại A . áp dụng Pytago

=>\(BC=\sqrt{AB^2+AC^2}\)

\(BC=\sqrt{3^2+4^2}=5cm\)

có \(AC^2=CH.BC\)(hệ thức lượng)

\(=>CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2cm\)

có tam giác AHC vuông tại H

=>\(AH=\sqrt{AC^2-CH^2}=\sqrt{4^2-3,2^2}=2,4cm\)

=>\(S\left(\Delta AHC\right)=\dfrac{AH.HC}{2}=\dfrac{ }{ }\)\(\dfrac{2,4.3,2}{2}=3,84cm^2\)