K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

trả lời nhanh nha

17 tháng 5 2016

Mik cm từ từ nhé :

  a ) Ta có : BD = BA ( cách vẽ )

=> ABD cân tại B

=>  góc BAD = BDA

a) ta có: BD = BA (gt)

=> tam giác ABD cân tại B

=> góc BAD = góc BDA (góc tương ứng)

b)  xét tam giác AHD và tam giác DAC có:

góc H = góc C = 900 (gt)

       AD chung

=> tam giác AHD = tam giác DAC (ch-gn)

=> góc HAD = góc DAC (góc tương ứng)

=> AD là phân giác của góc HAC

27 tháng 1 2021

Xét tg BAD có: BD = BA(gt) =>  tg BAD cân tại B 

=> ^BAD = ^BDA (TC tg cân)

Ta có: ^BAD + ^CAD = ^BAC = 90 độ

Mà ^CAD + ^ADE =  ^DEA = 90 độ

=>  ^BAD = ^ADE

Lại có: ^BAD = ^BDA (tg BAD cân tại B )

=> ^ADE = ^BDA

Xét tg vuông AHD và tg vuông ADE:

^ADE = ^BDA (cmt)

AD chung

=> tg vuông AHD = tg vuông ADE (ch - gn)

=> AE = AH ( 2 cạnh tg ứng)

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)

hay \(\widehat{BAD}=\widehat{HDA}\)(1)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{EAD}=90^0\)(2)

Ta có: ΔHDA vuông tại H(AH\(\perp\)HD)

nên \(\widehat{DAH}+\widehat{HDA}=90^0\)(hai góc nhọn phụ nhau)(3)

Từ (1), (2) và (3) suy ra \(\widehat{EAD}=\widehat{HAD}\)

Xét ΔADH vuông tại H và ΔAED vuông tại E có 

AD chung

\(\widehat{HAD}=\widehat{EAD}\)(cmt)

Do đó: ΔADH=ΔAED(cạnh huyền-góc nhọn)

hay AH=AE(hai cạnh tương ứng)

a: \(BC=\sqrt{4^2+5^2}=\sqrt{41}\left(cm\right)\)

b: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

Suy ra: \(\widehat{BAD}=\widehat{BDA}\)

c: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)

\(\widehat{KAD}+\widehat{BAD}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên AD là tia phân giác của góc HAC