K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.b) So sánh hai tam giác ABC và INC.c) Chứng minh: góc MIN = 900.d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi...
Đọc tiếp

Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.

b) So sánh hai tam giác ABC và INC.

c) Chứng minh: góc MIN = 900.

d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích  ∆ABC.Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.

a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.

b) So sánh hai tam giác ABC và INC.

c) Chứng minh: góc MIN = 900.

d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích  ∆ABC.

1
20 tháng 9 2017

d) không có vị trí điểm I

17 tháng 4 2016

a)Cm góc ICA=góc BCN..

12 tháng 3 2017

mình 0 bt nhng ai chat nhìu thì kt bn với mình nha

4 tháng 6 2017

A C B N M I

a,

Ta có góc NBC + GÓC ABC = 90

Mà góc BAC + GÓC ABC = 90

=> GÓC BAC = GÓC NBC

LẠI CÓ GÓC BCN + GÓC BCI = 90

           GÓC BCI + GÓC ICA = 90

=> GÓC ICA = GÓC BCN

=> TAM GIÁC CAI ĐÔNG DẠNG VỚI TAM GIÁC CBN ( G.G)

b,

TỪ a,

=> \(\frac{AC}{BC}=\frac{CI}{CN}\)

MẶT KHÁC GÓC ACB = GÓC ICN = 90

=> TAM GIÁC ABC ĐỒNG DẠNG VƠI TAM GIÁC INC ( C.G.C)

c,

TỪ B,

=> GÓC NIC = GÓC BAC

C/M TƯƠNG TỰ ,

TAM GIÁC CIM ĐỒNG DẠNG VỚI TAM GIÁC ABC ( G.G)

=> GÓC MIC = GÓC B

=> GÓC MIN = GÓC A + GÓC B = 90

15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ