Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
a: Xét tứ giác ADCH có
M là trung điểm chung của AC và HD
góc AHC=90 độ
Do đó: ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Xét tứ giác AHCE có:
+ D là trung điểm của AC (gt).
+ D là trung điểm của HE (do E đối xứng với H qua D).
=> Tứ giác AHCE là hình bình hành (dhnb).
Mà ^AHC = 90o (AH vuông góc BC).
=> Tứ giác AHCE là hình chữ nhật (dhnb).
Xét tứ giác AHBN có:
+ M là trung điểm của AB (gt).
+ M là trung điểm của HN (do N đối xứng với H qua M).
=> Tứ giác AHBN là hình bình hành (dhnb).
Mà ^AHB = 90o (AH vuông góc BC).
=> Tứ giác AHBN là hình chữ nhật (dhnb).
b) Tứ giác AHCE là hình chữ nhật (cmt).
=> AE // HC (Tính chất hình chữ nhật).
Xét tứ giác AEHI có:
+ AE // IH (do AE // HC).
+ AI // EH (gt).
=> Tứ giác AEHI là hình bình hành (dhnb).
c) Ta có: AE = IH (Tứ giác AEHI là hình bình hành).
Mà AE = HC (Tứ giác AHCE là hình chữ nhật).
=> IH = HC.
=> H là trung điểm IC.
Xét tứ giác CAIK có:
+ H là trung điểm của IC (cmt).
+ H là trung điểm của AK (AH = HK).
=> Tứ giác CAIK là hình bình hành (dhnb).
Mà AK vuông góc IC (do AH vuông góc BC).
=> Tứ giác CAIK là hình thoi (dhnb).
a: BC=10cm
AM=5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
c: Xét ΔCAB có
M là trung điểm của BC
MF//AB
Do đó F là trung điểm của AC
Xét tứ giác AMCD có
F là trung điểm chung của AC và MD
nên AMCD là hình bình hành
mà MA=MC
nên AMCD là hình thoi
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật