cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Từ H vẽ H...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

b: Ta có: AEHF là hình chữ nhật

=>HE//AF và HE=AF

Ta có: HE//AF

F\(\in\)AK

Do đó: HE//KF

Ta có: HE=AF

AF=FK

Do đó: HE=KF

Xét tứ giác HEFK có

HE//FK

HE=FK

Do đó: HEFK là hình bình hành

c: Ta có: AEHF là hình chữ nhật

=>AH cắt EF tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và EF

Ta có: HEFK là hình bình hành

=>HF cắt EK tại trung điểm của mỗi đường

=>I là trung điểm chung của HF và ÊK

Xét ΔEKF có

O,I lần lượt là trung điểm của EF,EK

=>OI là đường trung bình của ΔEKF

=>OI//KF

=>OI//AC

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

26 tháng 1 2022

a, Xét tứ giác AEHF có : ^AEH = ^EAF = ^HFA = 900

Vậy tứ giác AEHF là hcn 

=> AH = EF ( 2 đường chéo bằng nhau ) 

c, Theo Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=3cm\)

SABC = 1/2 . AB . AC = 1/2 . 3 . 4 = 6 cm2

26 tháng 1 2022

a) Xét tứ giác AEHF:

\(\widehat{EAF}=90^o;\widehat{AEH}=90^o;\widehat{AFH}=90^o\)

(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).

=> AEHF là hình chữ nhật (dhnb).

=> AH = EF (Tính chất 2 đường chéo của hình chữ nhật).

b) Ta có: FK = AF (gt).

Mà AF = EH (AEHF là hình chữ nhật).

=> AF = EH = FK.

Ta có: EH // AF (AEHF là hình chữ nhật).

Mà F thuộc AK (gt).

=> EH // FK.

Xét tứ giác EHKF:

 EH // FK (cmt).

 EH = FK (cmt).

=> EHKF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

Ta có: BC2 = AB2 + AC2 (Định lý Pytago).

Thay số: 52 = AB2 + 42.

=> AB= 9. => AB = 3.

Diện tích tam giác ABC vuông tại A: 

\(\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right).\)

14 tháng 12 2021

undefined

a, Vì HE ⊥ AB ; FA ⊥ AB => HE // FA (từ ⊥ đến // )

+, EA ⊥ AC ; HF ⊥ AC => EA // HF (từ ⊥ đến // )

Xét tứ giác AEHF có: HE // FA (cmt) ; EA // HF (cmt)

=> Tứ giác AEHF là hình bình hành (dhnb)

 mà \(\hat{EAF} =90^0\)

=> Tứ giác AEHF là hình chữ nhật

=> AH = EF

b, Vì AEHF là hình chữ nhật (cmt)

=> EH//AF;  EH = AF mà AF= FK (gt)

=> EH = FK

+, Xét tứ giác EHKF có: EH = FK (cmt)

                                 EH // FK (do EH // AF; K ∈ AF)

=> Tứ giác EHKF là hình bình hành (dhnb)

9 tháng 12 2016

Mình chỉ giải c thôi nhé :) Phần a, b nếu ai muốn biết hỏi @Nấm Chanel

A B C H E F K O I

Có \(\widehat{HEA}=\widehat{BAC}=90^o\) nên \(EH\text{//}AC\) hay \(EH\text{//}FK\)

Đồng thời tứ giác \(EHFA\) có 3 góc vuông nên là hình chữ nhật, tức EH = FA ( 2 cạnh đối ), mà AF = FK ( giả thiết ) nên EH = FK

Từ đó suy ra tứ giác EHKF là hình bình hành nên EK cắt HF tại trung điểm mỗi đường, hay I là trung điểm EK (1)

Đồng thời hình chữ nhật EHFA có hai đường chéo EF và AH cắt nhau tại O, nên O là trung điểm EF ( tính chất hình chữ nhật ) (2)

(1)(2)\(\Rightarrow\)OI là đường trung bình \(\Delta EKF\) , suy ra OI // FK, hay OI // AC

Vậy ...

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*