K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

***Hình bạn tự vẽ nha***

a, Xét tam giác ABC và tam giác BHA có : 

Góc ABC chung 

Góc BAC = góc BHA ( =90°)

==> Tam giác ABC đồng dạng tam giác HBA ( g.g ) 

==> AB/HB = BC/AB ==> AB^2 = HB. BC 

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔAEB và ΔIEC có

góc BAE=góc EIC

góc AEB=góc IEC

=>góc ABE=góc ICE=góc IBC

=>ΔIEC đồng dạng với ΔICB

=>IE/IC=IC/IB

=>IC^2=IE*IB

c: Xét ΔBNC có 

BI vừa là phân giác, vừa là đường cao

=>ΔBNC cân tại B

=>I là trung điểm của NC

ΔNAC vuông tại A

mà I là trung điểm của NC

nên IA=IN=IC

=>IN^2=IE*IB

và IA=IM

nên IM^2=IE*IB

=>IM/IE=IB/IM

=>ΔIMB đồng dạng với ΔIEM

=>góc IMB=90 độ

=>ĐPCM

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

Do đó:ΔHBA\(\sim\)ΔABC

b: ta có: ΔHBA\(\sim\)ΔABC

nên BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

30 tháng 4 2022

thiếu phần c bạn giải giúp mik với

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc ACB chung

Do đó: ΔABC\(\sim\)ΔHAC

2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

=>BM/3=CM/4

Áp dụng tính chất của dãy tr số bằng nhau, ta được:

\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)

Do đó: BM=75/7(cm); CM=100/7(cm)

loading...  loading...  

20 tháng 4 2023

câu B: Gọi I, K lần lượt là trung điểm của HC, HB. Chứng minh 1/OH^2=1/Ok^2+1/OI^2