K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Góc 2α =  A M H ^

a, Ta có:  sin 2 α = A H A M = 2 A H A M = 2 A B . A C B C 2 = 2 sin α . cos α

b,  1 + cos2α =  1 + H M A M = H C A M = 2 H C B C =  2 . A C 2 B C 2 = 2 cos 2 α

c, 1 – cos2α =  1 - H M A M = H B A M = 2 H B B C =  2 . A B 2 B C 2 = 2 sin 2 α

a: Xét ΔMBA và ΔMAC có

góc MAB=góc MCA

góc M chung

=>ΔMBA đồng dạng với ΔMAC

=>MB/MA=MA/MC

=>MA^2=MB*MC

=>MC/MB=AB^2/AC^2

b: EF//AM

AM vuông góc OA

=>EF vuông góc OA

=>góc AEF+góc OAE=90 độ

=>góc AEF+(180 độ-góc AOB)/2=90 độ

=>góc AEF+90 độ-góc ACB=90 độ

=>gócAEF=góc ACB

=>góc BEF+góc BCF=180 độ

=>BEFC nội tiếp

=>góc BEC=góc BFC=90 độ

Xét ΔABC có

BF,CE là đường cao

BF căt CE tại H

=>H là trực tâm

=>AH vuông góc CB tại D

a: Xét ΔMBA và ΔMAC có

góc MAB=góc MCA

góc M chung

=>ΔMBA đồng dạng với ΔMAC

=>MB/MA=MA/MC

=>MA^2=MB*MC

=>MC/MB=AB^2/AC^2

b: EF//AM

AM vuông góc OA

=>EF vuông góc OA

=>góc AEF+góc OAE=90 độ

=>góc AEF+(180 độ-góc AOB)/2=90 độ

=>góc AEF+90 độ-góc ACB=90 độ

=>gócAEF=góc ACB

=>góc BEF+góc BCF=180 độ

=>BEFC nội tiếp

=>góc BEC=góc BFC=90 độ

Xét ΔABC có

BF,CE là đường cao

BF căt CE tại H

=>H là trực tâm

=>AH vuông góc CB tại D

a: Ta có: ΔABC vuông tại A 

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên BC=2AM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay \(AB^2=2\cdot BH\cdot AM\)