K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEAB vuông tại E và ΔHBA vuông tại H có

AB chung

góc EAB=góc HBA

Do đó: ΔEAB=ΔHBA

Suy ra: góc DAB=góc DBA

=>ΔDAB cân tại D

=>DA=DB(1)

Ta có: góc DAB+góc DAF=90 độ

góc DBA+góc DFA=90 độ

mà góc DAB=góc DBA

nên góc DAF=góc DFA

=>DA=DF=DB

=>D là trung điểm của BF

b: 

a: Ta có: ΔABC vuông tại A 

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên BC=2AM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay \(AB^2=2\cdot BH\cdot AM\)

27 tháng 7 2017

2/ \(\frac{sin^3a-cos^3a}{sin^3a+cos^3a}=\frac{tan^3a-1}{tan^3a+1}=\frac{3^3-1}{3^3+1}=\frac{13}{14}\) (chia tử mẫu cho cos3a)

a: AB=2AC

AB^2/AC^2=BH/HC

=>BH/HC=2^2=4

=>BH=4HC

AH^2=HB*HC

=>4HC^2=a^2

=>HC=a/2

=>BH=4*a/2=2a

BC=2a+a/2=5/2*a

\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)

\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)

b: AM=BC/2=5/4a

MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a