Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề si rồi trong tam giác vuông cạnh huyền phải lớn nhất chứ
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH\cdot\sqrt{41}=5\cdot4\\BH\cdot\sqrt{41}=5^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\\BH=\dfrac{25\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)
b: Xét ΔABC có AE là phân giác
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)
=>\(\dfrac{BE}{5}=\dfrac{CE}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{5}=\dfrac{CE}{4}=\dfrac{BE+CE}{5+4}=\dfrac{\sqrt{61}}{9}\)
=>\(BE=\dfrac{5}{9}\sqrt{61}\left(cm\right);CE=\dfrac{4}{9}\sqrt{61}\left(cm\right)\)
c: Xét tứ giác AMEN có
\(\widehat{AME}=\widehat{ANE}=\widehat{MAN}=90^0\)
=>AMEN là hình chữ nhật
Hình chữ nhật AMEN có AE là phân giác của góc MAN
nên AMEN là hình vuông