K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)

c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)

CH=BC-BH=12,8(cm)

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

21 tháng 4 2018

  A B C H D E

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)

mà AD + DC = AC = 16 cm nên \(AD=6cm.\)

c) Xét tam giác BEA và tam giác BDC có:

\(\widehat{ABE}=\widehat{CBD}\)  (BD là tia phân giác)

\(\widehat{BAE}=\widehat{BCD}\)  (Cùng phụ với góc \(\widehat{ABC}\)  )

\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)

Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)  

17 tháng 8 2018

Bài giải : 

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

^BHA=^BAC(=90o)

⇒ΔHBA∼ΔABC(g−g)

⇒HBAB =ABCB ⇒AB2=BH.BC

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

BC=√AB2+AC2=20(cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

ADDC =ABBC =1220 =35 

mà AD + DC = AC = 16 cm nên AD=6cm.

c) Xét tam giác BEA và tam giác BDC có:

^ABE=^CBD  (BD là tia phân giác)

^BAE=^BCD  (Cùng phụ với góc ^ABC  )

⇒ΔBEA∼ΔBDC(g−g)

⇒BEBD =ABCB 

Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA