Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,cosC=\dfrac{5}{13}\\ Ta,có:cos^2C+sin^2C=1\\ \Rightarrow sinC=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ cosB+sinC=1\\ \Leftrightarrow cosB+\dfrac{12}{13}=1\\ \Rightarrow cosB=\dfrac{1}{13}\\ tanC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)
\(b,tanB=\dfrac{1}{5}\Rightarrow\dfrac{sinB}{cosB}=\dfrac{1}{5}\Rightarrow cosB=5sinB\\ E=\dfrac{sinB-3cosB}{2sinB+3cosB}=\dfrac{sinB-3.5.sinB}{2sinB+3.5.sinB}=\dfrac{-14sinB}{17sinB}=-\dfrac{14}{17}\)
Bài 2:
Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)
Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)
\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)
Ta có : \(\widehat{B}+\widehat{C}=90^o\)
\(\Rightarrow\cos C=\sin B=\frac{1}{3}\)
Ta có : \(\sin^2C+\cos^2C=1\Rightarrow\sin^2C=1-\cos^2C=\frac{8}{9}\)
\(\Rightarrow\sin C=\frac{2\sqrt{2}}{9}\)
Lời giải:
Với tam giác $ABC$ vuông tại $A$ ta có:
\(\sin B=\frac{AC}{BC}; \sin C=\frac{AB}{BC}; \cos B=\frac{AB}{BC}; \cos C=\frac{AC}{BC}\)
Vì $AB$ khác $AC$ nên hiển nhiên \(\cos B\neq \cos C\) nên mẫu số luôn đảm bảo khác 0
Do đó:
\(\frac{\sin B-\sin C}{\cos B-\cos C}=\frac{\frac{AC}{BC}-\frac{AB}{BC}}{\frac{AB}{BC}-\frac{AC}{BC}}=\frac{AC-AB}{AB-AC}=-1< 0\)
Ta có đpcm