K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\)

b: Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔHDA vuông tại H)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên \(\widehat{CAD}=\widehat{HAD}\)

Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)

Do đó: ΔAHD=ΔAKD

=>AH=AK và DH=DK

AH=AK

nên A nằm trên đường trung trực của HK(1)

Ta có: DH=DK

=>D nằm trên đường trung trực của HK(2)

Từ (1) và (2) suy ra AD là đường trung trực của HK

a: ΔBAD cân tại B

=>góc BAD=góc BDA

b: góc BAD+góc CAD=90 độ

góc BDA+góc HAD=90 độ

mà góc BAD=góc BDA

nên góc CAD=góc HAD

=>AD là phân giác của góc HAC

c: Xét ΔABC có AB<AC

nên góc ABC>góc ACB

d: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

=>AH=AK

e: (AB+AC)^2=AB^2+AC^2+2*AB*AC

=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2

=>AB+AC<BC+AH

25 tháng 4 2016

a) Ta có: BA = BD (Gt)

=> Tam giác BAD cân tại B

=> góc BAD = góc BDA (đpcm)

b) Ta có: góc HAD + góc HDA = 90(tam giác ADH vuông tại H)

              góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)

Mà góc HDA = góc DAB (cm a)

=> 900 - HDA = 90- DAB

hay góc HAD = góc DAC    (1)

Mà AD nằm giữa AH và AC    (2)

Từ (1) và (2):

=> AD là phân giác của góc HAC (đpcm)

c) Xét tam giác AHD và tam giác AKD có:

                    góc H   =  góc K (=900)

                       AD    =   AD (cạnh chung)

                  góc HAD = góc DAC ( cm b)

    Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)

                       => AH = AK (cạnh tương ứng) (đpcm)

d) Đang nghĩ

25 tháng 4 2016

d) Xét tam giác DKC có: góc K = 900

=> Cạnh DC lớn nhất

==> KC + AK + BD < DC + BD + AK (vì KC < DC)

==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)

Mà: AB = BD (Gt)

      AK = AH (cm c)

=> AC + AB < BC + AH 

Mà BC + AH < BC + 2AH

==> AB + AC < BC + 2AH (đpcm)