Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Tính BC:
\(\Delta ABC\)vuông tại A nên:
BC2=AB2+AC2
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)
b) Xét \(\Delta vuôngABC\)và\(\Delta VuôngHBA\)có:
\(\widehat{B}\):chung
Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)
Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)
=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH =>AB2 = BC.BH
c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:
\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)
Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:
\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác) (2)
Vì BI là đường phân giác của \(\Delta HBA\) nên:
\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác) (3)
Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)
a: ΔACB vuông tại A co AH vuông góc BC
nên AB^2=BH*BC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=16/8=2
=>AD=6cm
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng vơi ΔABC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BH=12^2/20=7,2cm
c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20(cm)
AH=12*16/20=9,6cm
HC=AC^2/BC=12,8cm
S AHC=1/2*9,6*12,8=61,44cm2
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
a + b ) Xét ΔABC và ΔHBA có :
\(\widehat{BAC}=\widehat{BHA}=90^o\)
\(\widehat{ABC}\) chung
=> ΔABC ∼ ΔHBA ( g.g )
\(\Rightarrow\frac{AB}{BC}=\frac{HB}{AB}hay:AB^2=BC\cdot HB\)
c) Áp dụng định lí Pi-ta-go , dễ tính được BC =20 cm
Ta có :
\(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{AH\cdot BC}{2}\\ \Rightarrow AB\cdot AC=AH\cdot BC\\ \Leftrightarrow12\cdot16=AH\cdot20\\ \Rightarrow AH=\frac{12\cdot16}{20}=9,6\left(cm\right)\)
d) Do AD là phân giác góc BAC nên ta có :
\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{12+16}=\frac{20}{28}=\frac{5}{7}\\ \Rightarrow\frac{CD}{AC}=\frac{5}{7}\Rightarrow\frac{CD}{16}=\frac{5}{7}\Rightarrow CD=\frac{80}{7}\approx11,4\left(cm\right)\)
Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H có AH = 9,6 cm ; AC = 16 cm => HC = 12,8 cm
Ta có :
\(HD+DC=HC\\ \Rightarrow HD=HC-DC=12,8-11,4\\ \Rightarrow HD=1,4\left(cm\right)\)
Áp dụng định lí Pi-ta-go trong ΔAHD vuông tại H có AH = 9,6 cm ; HD = 1,4 cm => AD \(\approx\) 9,7 cm
a,Xét tam giác ABC và tam giác HBA có:
góc BAC=góc AHB
Góc B chung
=>Tam giác ABC đồng dạng với tam giác HBA
b,Do tam giác ABC đồng dạng với tam giác HBA
=>AB/BC=HB/AB
<=>AB2=BC.HB
c,Áp dụng định lí pytago
=>AB2+AC2=BC2
<=>BC2=144+256=400
<=>BC=20
Tam giác ABC đồng dạng với tam giác HBA
=>AH/AB=AC/BC
<=>AH/12=16/20=4/5
<=>5AH=48
<=>AH=9,6
d,Áp dụng t/c đường phân giác trong ta có:
AD/DC=AB/BC=12/20=3/5 (1)
=>\(\frac{AD}{AC-AD}\)=3/5
<=>\(\frac{AD}{16-AD}\)=3/5
<=>5AD=48-3AD
<=>AD=6
thay AD=6 vào (1) ta có:
6/DC=3/5
<=>DC=10