Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
k nhé
a) Trong tam giác ABC có AB<AC
=>góc ACB< góc ABC
Có tam giác ABH vuông tại H
=>HAB+ABH=90 độ )
=>60 độ+ABH=90 độ
ABH=30 độ
b) AD là tia phân giác của góc A
=>EAI= IAB=60độ:2= 30 độ
Xét tam giác vuông BHA và tam giác vuông AIB có
Cạnh huyền AB chung
ABH=IAB=30 độ
=> tam giác AIB=tam giác BHA ( cạnh huyền- góc nhọn)
c) Xét tam giác vuông AIE và tam giác vuông AIB có
Cạnh AI chung
EAI=IAB=30 độ
=> tam giác AIE= tam giác AIB ( cạnh huyền- góc nhọn)
=>AE=AB ( 2 cạnh tương ứng)
=> Tam giác ABE là tam giác cân và có EAB=60 độ
=> Tam giác ABE là tam giác đều
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có
AB=AE
EAD=DAB=30 độ
Cạnh AD chung
=> tam giác ADB= tam giác ADC (c.g.c)
=> DB=DE (1) và góc ABD=góc AED
do đó CBx=CED( cùng kề bù với 2 góc bằng nhau)
CBx>góc C ( CBx là góc ngoài của tam giác ABC)
=> CED>C, do đó DC>DE (2)
Từ (1) và (2) =>DC>DB
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cm : a) Xét t/giác ABD và t/giác AHD
có: \(\widehat{B}=\widehat{AHD}=90^0\) (gt)
AD : chung
\(\widehat{BAD}=\widehat{HAD}\) (gt)
=> t/giác ABD = t/giác AHD (ch - gn)
=> DB = BH (2 cạnh t/ứng)
Gọi I là giao điểm của AD và BH
Xét t/giác BDI và t/giác HDI
có BD = HD (gt)
\(\widehat{BDI}=\widehat{HDI}\)(vì t/giác ABD = t/giác AHD)
DI : chung
=> t/giác BDI = t/giác HDI (c.g.c)
=> \(\widehat{BID}=\widehat{HID}\)(2 góc t/ứng)
Mà \(\widehat{BID}+\widehat{HID}=180^0\) (kể bù)
=> \(\widehat{BID}=\widehat{HID}=90^0\)
=> BH \(\perp\)AD
b) Xét t/giác ABC có \(\widehat{B}\) = 900 => \(\widehat{A}+\widehat{C}=90^0\) => \(\widehat{C}=90^0-\widehat{A}=90^0-60^0=30^0\)
AD là tia p/giác của góc A => \(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{C}=\widehat{DAC}=30^0\) => t/giác ADC cân tại D
=> AD = DC => AH = HC (quan hệ giữa đường và hình chiếu)
c) Xét t/giác ABD có : AB < AD (cạnh góc vuông < cạnh huyền)
Mà AD = DC (cmt)
=> DC > AB
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )
a) Xét \(\Delta\)vuông BAD và \(\Delta\)vuông BHD có :
Góc BAD = góc BHD ( = 900 )
BD chung
Góc ABD = góc HBD ( BD là tia phân giác )
\(\Rightarrow\)\(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền - góc nhọn )
\(\Rightarrow\)AD = DH ( cặp cạnh tương ứng ) (1)
b) Xét tam giác DHC :
Góc DHC = 900 > góc C
\(\Rightarrow\)DC > DH ( quan hệ giữa góc và cạnh đối nhau ) (2)
Từ (1) , (2) \(\Rightarrow\)DC > AD
c) theo chứng minh câu a có :
Tam giác BAD = tam giác BHD
\(\Rightarrow\) BA = BC
Xét tam giác ADK và tam giác HDC có:
Góc KAD = góc CHD ( = 900 )
AD = DH ( cm câu a)
Góc ADK = góc HDC ( đối đỉnh )
\(\Rightarrow\)tam giác ADK = tam giác HDC
\(\Rightarrow\)AK = HC ( cặp cạnh tương ứng )
Ta có :
BK = BA + AK
BC = BH + HC
mà BA = BH ; AK = HC
\(\Rightarrow\)BK = BC
\(\Rightarrow\) tam giác KBC cân
a) Xét △ABD và △DAH có
AD : cạnh chung
góc BAD = góc DAH ( gt )
⇒ △ABD = △DAH ( ch - gn )
⇒ △AB = AH ( 2 cạnh t/ứng )
⇒ △ABH cân tại A
Trong △ cân , đường pg đồng thời là đường trung tuyến , đường trung trực , đường cao
⇒ AD là đường pg đồng thời là đường trung trực
⇒ AD ⊥ BH
b) Tia pg góc A = \(\frac{60^0}{2}=30^0\)
⇒ góc BAD = góc DAH ( = \(30^0\) )
△ABC có : góc A + góc C + góc B = \(180^0\)
⇒ góc C = \(180^0\) - góc A - góc B = \(180^0-90^0-60^0=30^0\)
⇒ góc HAD = góc C ( = \(30^0\) )