K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{B}+\widehat{C}=90^0\)

nên \(\widehat{B}=60^0\)

Xét ΔABC có 

N là trung điểm của AC

M là trung điểm của BC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//AB 

hay \(\widehat{NMC}=60^0\)

12 tháng 11 2021

a/ MN là ĐTB của tam giác ABC 
=> MN//AB
=> NMC=ABC=90-30=60 độ
b/ N là trung điểm 2 đường chéo AC và ME của tg AECM
=> AECM là hình bình hành.
c/ c/ gọi O là giao của MC và DE khi đó tam giác EMD có ON là ĐTB nên ON//DM và tam giác AMC có ON là ĐTB nên ON // AM

=> A, M, D thẳng hàng

=> M là trung điểm AD mặt khác có M là trung điểm BC

=> ABCD là hình bình hành mà góc A bằng 90 độ nên là hình chữ nhật

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng

 Chx h xấu : vKhông có mô tả.

Không có mô tả.

Không có mô tả.

Không có mô tả.

Không có mô tả.

12 tháng 11 2022

Đúng ko ba

22 tháng 11 2023

Gọi giao điểm của MF với AB là K, giao điểm của ME với AC là N

E đối xứng M qua AC

=>AC là đường trung trực của ME

=>AC vuông góc với ME tại trung điểm của ME

=>AC vuông góc với ME tại N và N là trung điểm của ME

M đối xứng với F qua AB

=>AB là đường trung trực của MF

=>AB vuông góc với MF tại trung điểm của MF

mà AB cắt MF tại K

nên AB vuông góc MF tại K và K là trung điểm của MF

Xét ΔAME có

AN là đường trung tuyến

AN là đường cao

Do đó: ΔAME cân tại A

Xét ΔAMF có

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAMF cân tại A

ΔAME cân tại A

mà AC là đường cao

nên AC là phân giác của \(\widehat{EAM}\)

=>\(\widehat{EAM}=2\cdot\widehat{MAC}\)

ΔAMF cân tại A

mà AB là đường cao

nên AB là phân giác của \(\widehat{MAF}\)

=>\(\widehat{FAM}=2\cdot\widehat{BAM}\)

AM=AF

AM=AE

Do đó: AF=AE

\(\widehat{EAM}+\widehat{FAM}=\widehat{EAF}\)

=>\(\widehat{EAF}=2\cdot\widehat{BAM}+2\cdot\widehat{CAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)

\(=2\cdot90^0=180^0\)

=>E,A,F thẳng hàng

mà AF=AE(cmt)

nên A là trung điểm của EF

=>F đối xứng E qua A