Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ MN là ĐTB của tam giác ABC
=> MN//AB
=> NMC=ABC=90-30=60 độ
b/ N là trung điểm 2 đường chéo AC và ME của tg AECM
=> AECM là hình bình hành.
c/ c/ gọi O là giao của MC và DE khi đó tam giác EMD có ON là ĐTB nên ON//DM và tam giác AMC có ON là ĐTB nên ON // AM
=> A, M, D thẳng hàng
=> M là trung điểm AD mặt khác có M là trung điểm BC
=> ABCD là hình bình hành mà góc A bằng 90 độ nên là hình chữ nhật
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
b: AC=8cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
c: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường trung trực
nên AB là tia phân giác của góc DAE(1)
Ta có: D và F đối xứng nhau qua AC
nên AC là đường trung trực của DF
=>AD=AF
=>ΔADF cân tại A
mà AC là đường trung trực của DF
nên AC là tia phân giác của góc DAF(2)
Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)
Do đó: F,A,E thẳng hàng
Gọi giao điểm của MF với AB là K, giao điểm của ME với AC là N
E đối xứng M qua AC
=>AC là đường trung trực của ME
=>AC vuông góc với ME tại trung điểm của ME
=>AC vuông góc với ME tại N và N là trung điểm của ME
M đối xứng với F qua AB
=>AB là đường trung trực của MF
=>AB vuông góc với MF tại trung điểm của MF
mà AB cắt MF tại K
nên AB vuông góc MF tại K và K là trung điểm của MF
Xét ΔAME có
AN là đường trung tuyến
AN là đường cao
Do đó: ΔAME cân tại A
Xét ΔAMF có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAMF cân tại A
ΔAME cân tại A
mà AC là đường cao
nên AC là phân giác của \(\widehat{EAM}\)
=>\(\widehat{EAM}=2\cdot\widehat{MAC}\)
ΔAMF cân tại A
mà AB là đường cao
nên AB là phân giác của \(\widehat{MAF}\)
=>\(\widehat{FAM}=2\cdot\widehat{BAM}\)
AM=AF
AM=AE
Do đó: AF=AE
\(\widehat{EAM}+\widehat{FAM}=\widehat{EAF}\)
=>\(\widehat{EAF}=2\cdot\widehat{BAM}+2\cdot\widehat{CAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)
\(=2\cdot90^0=180^0\)
=>E,A,F thẳng hàng
mà AF=AE(cmt)
nên A là trung điểm của EF
=>F đối xứng E qua A
a: Ta có: \(\widehat{B}+\widehat{C}=90^0\)
nên \(\widehat{B}=60^0\)
Xét ΔABC có
N là trung điểm của AC
M là trung điểm của BC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//AB
hay \(\widehat{NMC}=60^0\)