K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

a,i, Tìm được AB=3cm và AC =  6 3 cm

ii, Ta có:  A B B D = A C B C =  cos A B C ^ = cos 60 0 =  cos A C D ^ = A C C D

b, Ta có:  1 A H 2 = 1 A C 2 + 1 A D 2

24 tháng 7 2019

A C B H D E F

24 tháng 7 2019

a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)

      Xét \(\Delta\)AHD và \(\Delta\)FHA có:

        \(\widehat{AHD}=\widehat{FHA}=90^o\)

           \(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)

\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)

\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)

mà \(\widehat{ADH}+\widehat{HAD}=90^o\)

nên \(\widehat{FAH}+\widehat{HAD}=90^o\)

hay  \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A

c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:

\(BI\cdot BD=AB^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)

19 tháng 11 2023

a: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)

=>\(\dfrac{BA}{6}=cos60=\dfrac{1}{2}\)

=>BA=3(cm)

ΔACB vuông tại A

=>\(BA^2+AC^2=BC^2\)

=>\(AC^2+3^2=6^2\)

=>\(AC^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot CB=CA^2\)

=>\(CH\cdot6=27\)

=>CH=4,5(cm)

b: Sửa đề: \(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)

Xét ΔACD vuông tại A có AK là đường cao

nên \(AK^2=KD\cdot KC\)

Xét ΔACD vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)

=>\(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)

c: \(\widehat{ABC}+\widehat{CBD}=180^0\)(hai góc kề bù)

=>\(\widehat{CBD}+60^0=180^0\)

=>\(\widehat{CBD}=120^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-60^0=30^0\)

Xét ΔDBC có BD=BC

nên ΔBDC cân tại B

=>\(\widehat{BDC}=\widehat{BCD}=\dfrac{180^0-\widehat{DBC}}{2}=30^0\)

Xét ΔACB vuông tại A và ΔADC vuông tại A có

\(\widehat{ACB}=\widehat{ADC}\)

Do đó:ΔACB đồng dạng với ΔADC

=>\(\dfrac{BC}{CD}=\dfrac{AC}{AD}\)

=>\(\dfrac{BC}{AC}=\dfrac{CD}{AD}\)

mà BC=BD

nên \(\dfrac{BD}{AC}=\dfrac{CD}{AD}\)

=>\(\dfrac{BD}{CD}=\dfrac{AC}{AD}=tanD\)

8 tháng 7 2018

Giải bài 12 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Xét ΔABC có: BC < AB + AC (Bất đẳng thức tam giác)

Mà AD = AC (gt)

⇒ BC < AB + AD = BD

Mà OH là khoảng cách từ O đến dây BC

OK là khoảng cách từ O đến dây BD

⇒ OH > OK.( định lý về khoảng cách từ tâm đến dây)

b) Vì BD > BC

⇒ Giải bài 12 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Trong một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn

+ Trong một đường tròn, dây lớn hơn căng cung lớn hơn.

a: Xét ΔBAC vuông tại A có 

\(AC=6\cdot\sin60^0\)

hay \(AC=3\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=9\)

hay AB=3cm

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9}{6}=1.5\left(cm\right)\\CH=\dfrac{27}{6}=4.5\left(cm\right)\end{matrix}\right.\)

 

8 tháng 8 2023

làm thì làm hết chứ ai lại làm một nửa

 

14 tháng 6 2019

Giải bài 12 trang 72 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Xét ΔABC có: BC < AB + AC (Bất đẳng thức tam giác)

Mà AD = AC (gt)

⇒ BC < AB + AD = BD

Mà OH là khoảng cách từ O đến dây BC

OK là khoảng cách từ O đến dây BD

⇒ OH > OK.( định lý về khoảng cách từ tâm đến dây)

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot  AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot  MC = > NK là đường cao thứ 1.

MH \bot  NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot  AC tại I.

mà : AB \bot  AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot  AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình

 

9 tháng 6 2019

giúp vs ạ