Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A / Xét tam giác ABH và tam giác CBA
có góc AHB = góc BAC =90 độ
góc B chung
=> tam giác ABH đồng dạng với tam giác CBA (g-g)
Xét tam giác CBA và tam giác CAH
có góc AHC = góc BAC = 90 độ
Góc C chung
=> tam giác CBA đồng dạng với tam giác CAH (g-g)
Có + tam giác CBA đồng dạng với tam giác CAH
+ tam giác ABH đồng dạng với tam giác CBA
=> tam giác ABH đồng dạng với tam giác CAH
a, Xét Δ ABC và Δ CBH
Ta có : \(\widehat{ACB}=\widehat{CHB}=90^o\)
\(\widehat{ABC}=\widehat{CBH}\) (góc chung)
=> Δ ABC ∾ Δ CBH (g.g)
b, Ta có : Δ ABC ∾ Δ CBH (cmt)
=> \(\dfrac{AB}{CB}=\dfrac{BC}{BH}\)
=> \(BC^2=AB.BH\)
c,
Ta có : AB = AH + HB
=> AB = 4 + 9
=> AB = 13 (cm)
Ta có : \(BC^2=AB.BH\left(cmt\right)\)
=> \(BC^2=13.9\)
=> \(BC^2=117\)
=> BC = 10,8 (cm)
Xét Δ ABC
Ta có : \(AB^2=AC^2+BC^2\)
=> \(13^2=AC^2+10,8^2\)
=> \(169=AC^2+116,64\)
=> \(169-116,64=AC^2\)
=> \(52,36=AC^2\)
=> AC = 7,2 (cm)
Xét Δ ABC vuông tại C
=> \(S_{\Delta ABC}=\dfrac{AC.BC}{2}\)
=> \(S_{\Delta ABC}=\dfrac{7,2.10,8}{2}\)
=> \(S_{\Delta ABC}=38,88\left(cm^2\right)\)
a: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
Suy ra: AH=IK
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AH^2=AI\cdot AB\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AH^2=AK\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
hay AI/AC=AK/AB
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
AI/AC=AK/AB
Do đó: ΔAIK\(\sim\)ΔACB
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔACB vuông tại A có AH vuông góc BC
nên AC^2=CH*CB
c: \(BC=4+9=13\left(cm\right)\)
=>\(\dfrac{S_{ABH}}{S_{CBA}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{HB}{HC}=\dfrac{4}{9}\)
a: góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hcn
b: AIHK là hcn
=>góc AIK=góc AHK=góc C
=>ΔAIK đồng dạng với ΔACB
1: Xet ΔABH vuông tại H và ΔCAH vuông tại H có
góc ABH=góc CAH
=>ΔABH đồng dạng với ΔCAH
=>HA/HC=HB/HA
=>HA^2=HB*HC
2: AH=căn 4*9=6cm
AB=căn 4*13=2*căn 13(cm)