Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác EKB và tam giác AKB có:
BE = BA (gt)
BK chung
\(\widehat{EBK}=\widehat{ABK}\)
\(\Rightarrow\Delta EBK=\Delta ABK\left(c-g-c\right)\)
\(\Rightarrow\widehat{KEB}=\widehat{KAB}\)
Lại có \(\widehat{KAB}=\widehat{ACH}\) (Cùng phụ với góc \(\widehat{CAH}\) )
\(\Rightarrow\widehat{KEB}=\widehat{ACB}\)
Chúng lại ở vị trí đồng vị nên EK // CA.
Ta có: \(\widehat{ADK}=90^0-\widehat{ABD}\)
\(\widehat{AKD}=\widehat{HKB}=90^0-\widehat{DBC}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{ADK}=\widehat{AKD}\)
=>AK=AD
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đó:ΔBAD=ΔBED
Suy ra: DA=DE và góc BAD=góc BED=90 độ
=>DE=AK
Xét tứ giác AKED có
AK//DE
AK=DE
Do đó: AKED là hình bình hành
Suy ra: EK//AD
hay EK//AC
a, Xét △BAD và △BED có:
B1 = B2 ⇒△BAD = △BED
BD chung ⇒D1 = D2
mà DE // AH (cùng ⊥ BC)
Ta lại thấy AC ⊥ AB
⇒IE ⊥ AB
b, ⇒I1 = D1 ⇒△AID cân ⇒AI = AD
Mà AD = ED ⇒ AI = ED
AI // ED
⇒AIED là hình bình hành
⇒IE // AC
a) Cách 1: Xét tgiac BDC có BD = BC => Tgiac BDC cân tại B
Mà BI là pgiac của góc B => BI là trung tuyến của CD => ID = IC (đpcm)
Nếu chưa đc học cách 1 thì làm cách 2:
Xét tgiac BID và BIC có:
+ BI chung
+ góc DBI = CBI
+ BD = BC
=> Tgiac BID = BIC (c-g-c)
=> đpcm
b) Xét tgiac BED và BEC có:
+ BD = BC
+ góc DBE = CBE
+ BE chung
=> Tgiac BED = BEC (c-g-c)
=> đpcm
c) Nếu trên câu a đã dùng cách 2:
Tgiac BID = CID (cmt) => góc BID = CID
Mà hai góc này kề bù => góc BID = 90 độ => BI vuông góc CD
Mà AH vuông góc CD
=> AH song song với BI (đpcm)
Nếu trên câu a dùng cách 1: BI còn là đường cao của tgiac BDC cân tại B
=> BI vuông góc CD
....
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
HÌnh bạn tự vẽ nha
\(\text{a)Vì }BE\text{ là phân giác của }\Delta ABC:\)
\(\Rightarrow\widehat{ABE}=\widehat{EBH}\)
\(\text{Xét }\Delta ABE\text{ và }\Delta HBE\text{ có:}\)
\(BH=HA\left(gt\right)\)
\(BE\text{ chung}\)
\(\widehat{ABE}=\widehat{EBH}\left(cmt\right)\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{BHE}\text{(hai cạnh tương ứng)}\)
\(\text{Mà }\widehat{A}=90^0\left(gt\right)\)
\(\Rightarrow\widehat{H}=90^0\)
\(\Rightarrow EH\perp BC\)
\(\text{b)Vì }\Delta ABE=\Delta HBE\left(cmt\right)\)
\(\Rightarrow AE=EH\)
\(\Rightarrow\text{Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A (1)}\)
\(\text{Ta có:}BA=BH\left(gt\right)\)
\(\Rightarrow\text{Khoảng cách từ điểm B đến H bằng khoảng cách từ điểm B đến A (2)}\)
\(\text{Từ (1) và (2)}\)
\(\Rightarrow\text{BE là đường trung trực của AH}\)
\(\text{c)Vì }\widehat{A}=90^0\left(gt\right)\)
\(\Rightarrow AB\perp AC\)
\(\Rightarrow\widehat{EAK}=90^0\)
\(\text{Vì }EH\perp BC\left(cmt\right)\)
\(\Rightarrow\widehat{EHC}=90^0\)
\(\text{Xét }\Delta AEK\text{ và }\Delta HEC\text{ có:}\)
\(\text{AE = EH (cmt)}\)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta AEK=\Delta HEC\left(g-c-g\right)\)
\(\Rightarrow EK=EC\text{(2 cạnh tương ứng)}\)
\(\text{d)Ta có:}BA=BH\left(gt\right)\)
\(\Rightarrow\Delta\text{BAH cân tại B}\)
\(\Rightarrow\widehat{BAH}=\dfrac{180^0-\widehat{ABH}}{2}\left(3\right)\)
\(\text{Vì }\Delta AEK=\Delta HEC\left(cmt\right)\)
\(\Rightarrow\text{AK = HC ( 2 cạnh tương ứng)}\)
\(\text{Ta có:}\text{AK = BA + AK}\)
\(\text{BC = BH + HC}\)
\(\text{Mà BA = BH ( gt )}\)
\(\text{AK = HC ( cmt)}\)
\(\Rightarrow\text{BK = BC}\)
\(\Rightarrow\Delta\text{BKC cân tại B}\)
\(\Rightarrow\widehat{BKC}=\dfrac{180^0-\widehat{KBC}}{2}\left(4\right)\)
\(\text{Từ (3) và (4)}\)
\(\Rightarrow\widehat{BAH}=\widehat{BKC}\)
\(\text{Mà chúng đồng vị}\)
\(\Rightarrow\text{AH // BC}\)
\(\text{Ta có:}\Delta\text{BKC cân tại B}\)
\(\text{M là trung điểm BC }\)
\(\Rightarrow\text{BM là đường trung tuyến đồng thời là đường phân giác của }\Delta BKC\)
\(\text{Có BK là đường phân giác của tam giác BKC (cmt)}\)
\(\Rightarrow\text{BK là đường phân giác của}\widehat{KBC}\)
\(\text{Mà BE cũng là đường phân giác của}\widehat{BAH}\)
\(\Rightarrow\text{BE trùng BK hay ba điểm B ; E ; K thẳng hàng}\)