K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Xét tam giác EKB và tam giác AKB có:

BE = BA (gt)

BK chung

\(\widehat{EBK}=\widehat{ABK}\) 

\(\Rightarrow\Delta EBK=\Delta ABK\left(c-g-c\right)\)

\(\Rightarrow\widehat{KEB}=\widehat{KAB}\)

Lại có \(\widehat{KAB}=\widehat{ACH}\)   (Cùng phụ với góc \(\widehat{CAH}\)  )

\(\Rightarrow\widehat{KEB}=\widehat{ACB}\)

Chúng lại ở vị trí đồng vị nên EK // CA.

9 tháng 4 2018

A A B B C C D D H H K K E E

Ta có: \(\widehat{ADK}=90^0-\widehat{ABD}\)

\(\widehat{AKD}=\widehat{HKB}=90^0-\widehat{DBC}\)

mà \(\widehat{ABD}=\widehat{DBC}\)

nên \(\widehat{ADK}=\widehat{AKD}\)

=>AK=AD

Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đó:ΔBAD=ΔBED

Suy ra: DA=DE và góc BAD=góc BED=90 độ

=>DE=AK

Xét tứ giác AKED có

AK//DE

AK=DE

Do đó: AKED là hình bình hành

Suy ra: EK//AD
hay EK//AC

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.a) Chứng minh: tam giác EAB = tam giác EDB.b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // ADd) Chứng minh ba điểm C, H, K thẳng hàng.Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao...
Đọc tiếp

Bài 1: Cho tam giác ABC ( BC > AB). Tia phân giác của góc ABC cắt cạnh AC tại điểm E. Trên cạnh BC lấy điểm D sao cho BD = AB.

a) Chứng minh: tam giác EAB = tam giác EDB.

b) Kéo dài BA và DE cắt nhau ở K. Chứng minh: DK = AC.

c) Kẻ CH vuông góc với BE kéo dài tại H. Chứng minh: CH // AD

d) Chứng minh ba điểm C, H, K thẳng hàng.

Bài 2: Cho tam giác ABC (BC > AB). Tia phân giác của góc ABC cắt AC tại D. Trên BC lấy điểm E sao cho BE = AB.

a) Chứng minh: AD = DE.

b) BA và ED kéo dài cắt nhau ở I. Chứng minh: góc BID = góc BCD.

c) Chứng minh: BD là đường trung trực của đoạn thẳng IC.

d) Từ E kẻ đường thẳng song song với BD cắt AB kéo dài ở K. Chứng minh: tam giác AEK vuông. Tam giác ABC cần thêm điều kiện gì để AE = EK?

CÁC BẠN GIÚP MÌNH VỚI!!! KO CẦN VẼ HÌNH ĐÂU!!! MÌNH ĐANG CẦN GẤP LẮM!!! AI NHANH NHẤT MÌNH TICK CHO!!!

0
13 tháng 5 2021

a, Xét △BAD và △BED có:

B1 = B2                                  ⇒△BAD = △BED

BD chung                               ⇒D1 = D2

mà DE // AH (cùng ⊥ BC)

Ta lại thấy AC ⊥ AB

⇒IE ⊥ AB

b, ⇒I1 = D1 ⇒△AID cân ⇒AI = AD

Mà AD = ED ⇒ AI = ED

                         AI // ED

⇒AIED là hình bình hành

⇒IE // AC

13 tháng 5 2021

làm j đã học hình bình hành

 

26 tháng 2 2020

a) Cách 1: Xét tgiac BDC có BD = BC => Tgiac BDC cân tại B

Mà BI là pgiac của góc B => BI là trung tuyến của CD => ID = IC (đpcm)

Nếu chưa đc học cách 1 thì làm cách 2:

Xét tgiac BID và BIC có:

+ BI chung

+ góc DBI = CBI

+ BD = BC

=> Tgiac BID = BIC (c-g-c)

=> đpcm

b) Xét tgiac BED và BEC có:

+ BD = BC

+ góc DBE = CBE

+ BE chung

=> Tgiac BED = BEC (c-g-c)

=> đpcm

c) Nếu trên câu a đã dùng cách 2:

Tgiac BID = CID (cmt) => góc BID = CID

Mà hai góc này kề bù => góc BID = 90 độ => BI vuông góc CD

Mà AH vuông góc CD

=> AH song song với BI (đpcm)

Nếu trên câu a dùng cách 1: BI còn là đường cao của tgiac BDC cân tại B

=> BI vuông góc CD

....

a: Xét ΔAHB và ΔAHC có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó:ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

b: Xét ΔABC có 

AH là đường trung tuyến

BD là đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

6 tháng 5 2022

undefinedkhocroi

6 tháng 3 2022

HÌnh bạn tự vẽ nha

\(\text{a)Vì }BE\text{ là phân giác của }\Delta ABC:\)

\(\Rightarrow\widehat{ABE}=\widehat{EBH}\)

\(\text{Xét }\Delta ABE\text{ và }\Delta HBE\text{ có:}\)

\(BH=HA\left(gt\right)\)

\(BE\text{ chung}\)

\(\widehat{ABE}=\widehat{EBH}\left(cmt\right)\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAE}=\widehat{BHE}\text{(hai cạnh tương ứng)}\)

\(\text{Mà }\widehat{A}=90^0\left(gt\right)\)

\(\Rightarrow\widehat{H}=90^0\)

\(\Rightarrow EH\perp BC\)

\(\text{b)Vì }\Delta ABE=\Delta HBE\left(cmt\right)\)

\(\Rightarrow AE=EH\)

\(\Rightarrow\text{Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A (1)}\)

\(\text{Ta có:}BA=BH\left(gt\right)\)

\(\Rightarrow\text{Khoảng cách từ điểm B đến H bằng khoảng cách từ điểm B đến A (2)}\)

\(\text{Từ (1) và (2)}\)

\(\Rightarrow\text{BE là đường trung trực của AH}\)

\(\text{c)Vì }\widehat{A}=90^0\left(gt\right)\)

\(\Rightarrow AB\perp AC\)

\(\Rightarrow\widehat{EAK}=90^0\)

\(\text{Vì }EH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{EHC}=90^0\)

\(\text{Xét }\Delta AEK\text{ và }\Delta HEC\text{ có:}\)

\(\text{AE = EH (cmt)}\)

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(\widehat{AEK}=\widehat{HEC}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta AEK=\Delta HEC\left(g-c-g\right)\)

\(\Rightarrow EK=EC\text{(2 cạnh tương ứng)}\)

\(\text{d)Ta có:}BA=BH\left(gt\right)\)

\(\Rightarrow\Delta\text{BAH cân tại B}\)

\(\Rightarrow\widehat{BAH}=\dfrac{180^0-\widehat{ABH}}{2}\left(3\right)\)

\(\text{Vì }\Delta AEK=\Delta HEC\left(cmt\right)\)

\(\Rightarrow\text{AK = HC ( 2 cạnh tương ứng)}\)

\(\text{Ta có:}\text{AK = BA + AK}\)

\(\text{BC = BH + HC}\)

\(\text{Mà BA = BH ( gt )}\)

\(\text{AK = HC ( cmt)}\)

\(\Rightarrow\text{BK = BC}\)

\(\Rightarrow\Delta\text{BKC cân tại B}\)

\(\Rightarrow\widehat{BKC}=\dfrac{180^0-\widehat{KBC}}{2}\left(4\right)\)

\(\text{Từ (3) và (4)}\)

\(\Rightarrow\widehat{BAH}=\widehat{BKC}\)

\(\text{Mà chúng đồng vị}\)

\(\Rightarrow\text{AH // BC}\)

 

\(\text{Ta có:}\Delta\text{BKC cân tại B}\)

\(\text{M là trung điểm BC }\)

\(\Rightarrow\text{BM là đường trung tuyến đồng thời là đường phân giác của }\Delta BKC\)

\(\text{Có BK là đường phân giác của tam giác BKC (cmt)}\)

\(\Rightarrow\text{BK là đường phân giác của}\widehat{KBC}\)

\(\text{Mà BE cũng là đường phân giác của}\widehat{BAH}\)

\(\Rightarrow\text{BE trùng BK hay ba điểm B ; E ; K thẳng hàng}\)