Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha
a)Xét tam giác ACM và tam giác HCM có
góc MAC = góc MHC(=90 độ)
Góc HCM= góc ACM(giả thiết)
Cạnh MC chung
=>Tam giác ACM=tam giác HCM
=>MA=MH (2 cạnh tương ứng)(đpcm)
b) Xét tam giác HMB và tam giác AMI có
góc BMH = góc MAI(=90 độ)
MA=MH(thao phần a)
góc BMH= góc AMI(đối đỉnh)
=>tam giác HMB=tam giác AMI
=>MB=MI(2 cạnh tương ứng)
do đó tam giác MIB cân tại M
+) vì tam giác ACM = tam giác HCM(thao phần a)
=>CA=CH(2 cạnh tương ứng)(1)
ví tam gaics HMB=tam giác AMI(chứng minh trên)
=>HB=AI(2 cạnh tương ứng)(2)
Từ (1) và (2) =>
CA+AI=CH+HB
hay CI=CB
Do đó tam giác ICB cân tại C
a)Xét tam giác AMC và HMC
có góc MAC=MHC (=90 độ)
MC chung
góc ACM= HCM
=> tam giác AMC=HMC (ch-gn)
=> MA=MH
b) Xét tam giác AMI và HMB có
có góc MAI=MHB
AM=MH(cmt)
góc AMI=HMB
=> tam giác AMI = HMB
=> MI=MB => tam giác IMB cân
Xét tam giác BIC có AH vuông góc BC; BA vuông góc IC
có AB và IH cắt nhau tại M => M là trực tâm của tam giác BIC
=> CM là đường cao đồng thời là đường phân giác của tam giác BIC => tam giác BIC cân
bạn tự vẽ hình nhé
a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC
Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC
b) Tam giác ABC cân nên góc B = góc C
Xét tam giác BHM và tam giác CKM có:
góc BHM= góc CKM= 90 độ
góc B= góc C
BM=CM ( do M là trđiểm BC)
=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)
=> BH=CK
c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)
mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị)
=> góc IBM =góc IMB => tam giác IBM cân
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
a) Xét tam giác vuông ACM và tam giác vuông HCM có:
Góc ACM = Góc HCM ( vì CM là phân giác của góc C )
CM là cạnh chung
=> Tam giác ACM = Tam giác HCM ( Cạnh huyền góc nhọn )