Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiêp tuyến cắt nhau)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của CB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của CB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
hay OA\(\perp\)BC(đpcm)
a: ΔCAB vuông tại A
=>\(CA^2+AB^2=BC^2\)
=>\(CA^2=10^2-6^2=64\)
=>CA=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=BA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH\cdot10=6\cdot8=48\\BH\cdot10=6^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{48}{10}=4,8\left(cm\right)\\BH=\dfrac{36}{10}=3,6\left(cm\right)\end{matrix}\right.\)
Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
Xét (A;AH) có
BH,BD là tiếp tuyến
Do đó: BH=BD=3,6(cm)
b: Xét (A;AH) có
BH,BD là tiếp tuyến
Do đó: AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
Xét (A;AH) có
CE,CH là tiếp tuyến
Do đó: CH=CE và AC là phân giác của góc EAH
=>\(\widehat{EAH}=2\cdot\widehat{HAC}\)
\(\widehat{EAH}+\widehat{DAH}=\widehat{EAD}\)
=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{EAD}=2\cdot90^0=180^0\)
=>E,A,D thẳng hàng
c: Xét tứ giác AHBD có
\(\widehat{AHB}+\widehat{ADB}=90^0+90^0=180^0\)
=>AHBD là tứ giác nội tiếp
=>A,H,B,D cùng thuộc một đường tròn
a: Xét (A) có
BH,BD là các tiếp tuyến
Do đó: BH=BD và AB là phân giác của góc HAD
AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
Xét (A) có
CE,CH là các tiếp tuyến
Do đó: CE=CH và AC là phân giác của góc HAE
AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAE}+\widehat{HAD}=\widehat{DAE}\)
=>\(\widehat{DAE}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{DAE}=2\cdot\widehat{BAC}=180^0\)
=>D,A,E thẳng hàng
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot HC=AH^2\)
=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\dfrac{1}{4}DE^2\)
a: Ta có: ΔOBE cân tại O
mà OD là trung tuyến
nên OD vuông góc với BE và OD là phân giác của góc BOE
b: Xét ΔDEB có
DN vừa là đường cao, vừa là trung tuyến
nên ΔDEB cân tại D
c: Xét ΔDBO và ΔDEO có
DB=DE
BO=EO
DO chung
Do đo: ΔDBO=ΔDEO
=>góc DEO=90 độ
=>DE là tiếp tuyến của (O)
d: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đo: ΔAEB vuông tại E
Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2
=>OM//EN và OM=EN
=>EMON là hình bình hành
mà góc MEN=90 độ
nên EMON là hình chữ nhật