Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tam giác vuông ABH = tam giác vuông BAK (Góc vuông A = góc vuông B, cạnh AB chung, góc \(\widehat{KAB}=\widehat{HBA}\))
=> AH = BK
Mà AH // BK cì cùng vuông góc với AB => ABKH là hình bình hành, lại có 2 góc vuông nên nó là hình chữ nhật
b) Gọi O là trung điểm của HK. Ta có E, I , O thẳng hàng do ABKH là hình chữ nhật (các bạn tự chứng minh)
HK // AB // DC => E, O, F thẳng hàng
HKDC là hình thang cân => O, G, F cũng thẳng hàng
=> E, I, O, G, F thảng hàng
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
a.Xét tg mda và tg mbc có:
am=mc
m1=m2
bm=dm
suy ra tg mad = tg mbc {c.g.c]
b.vì tg mad = tg mbc {cmt}
suy ra c1 =a1{tg ứng};mà 2 góc này là 2 góc kề bù
suy ra:ad//bc
c.nối a với e
xét tg nae và tg nbc có:
na=nb
ne=nc
n1=n2
suy ra tg nae = tg nbc[c.g.c}
suy ra bc=ae{tg ung}
vì bc=ad;bc=ae
suy ra:ad=ae
suy ra :a là trung điểm của de