K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

11 tháng 4 2022

Mở ảnh

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

a: Xet ΔABC vuông tại B và ΔAHB vuông tại H có

góc A chung

=>ΔABC đồng dạng với ΔAHB

b: Xét ΔDEC vuông tại D và ΔHEB vuông tại H có

góc DEC=góc HEB

=>ΔDEC đồng dạng với ΔHEB

=>DE/HE=DC/HB=EC/EB

=>DC*EB=HB*EC

c: ED/EH=EC/EB

=>ED/EC=EH/EB

=>ΔEDH đồng dạng với ΔECB

e:

Xét ΔCFB có

BD,CH là đường cao

BD cắt CH tại E

=>E là trực tâm

=>FE vuông góc BC

=>FE//AB

Xét ΔHBA vuông tại H và ΔHFE vuông tại H có

HA=HE

góc HBA=góc HFE

=>ΔHBA=ΔHFE

=>HB=HF

Xét tứ giác BEFA có

BF cắt EA tại trung điểm của mỗi đường
BF vuông góc EA

=>BEFA là hình thoi

a: Xét ΔABC vuông tại A  và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔEDC vuông tại E và ΔHDA vuông tại H có

góc EDC=góc HDA

=>ΔEDC đồng dạng với ΔHDA

=>DE/DH=DC/DA=EC/HA

=>DC*HA=DA*EC

c: DE/DH=DC/DA

=>DE/DC=DH/DA

=>ΔDEH đồng dạng với ΔDCA

10 tháng 2 2018

kho ua