K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).a) CM: IE.IF= IC.IDb) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội...
Đọc tiếp

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).

a) CM: IE.IF= IC.ID

b) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội tiếp.

c)Gọi H,K lần lượt là trung điểm CF, ED. CMR: tam giác CHI đồng dạng tam giác EKI, từ đó chỉ ra rằng I là trung điểm của đoạn thẳng MN.

d) Gọi L là giao điểm của AC, DB; T là giao điểm của CE và GD; V là giao điểm của hai đường tròn ngoại tiếp các tam giác AEV và tam giác DET. CMR: 4 điểm D,A,L,Q cùng thuộc một đường tròn, từ đó chỉ ra rằng ba điểm L,T,V thẳng hàng

0
1 tháng 5 2020

dễ dàng nhận thấy AHDI là hình chữ nhật do đó AHDI nội tiếp đường tròn.

tam giác HDI là tam giác vuông tại D đường tròn ngoại tiếp tam giác HDI có tâm (O) là trung điểm của DI mà DI là đường trung trực của DE do đó OD=OE vậy E cũng thuộc đường tròn ngoại tiếp tam giác HDI do đó HDIE là tứ giác nội tiếp.

tâm (O) của đường tròn ngoại tiếp tứ giác HDIE là trung điểm của DI.

do HDIE là tứ giác nội tiếp và AHDI cũng là tứ giác nội tiếp nên A,H,D,I,E cùng thuộc một đường tròn