K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 15^2+20^2=25cm

EC=25-5=20cm

ED//AC

=>BD/DA=BE/EC=1/4

=>BD/1=DA/4=15/5=3

=>BD=3cm; DA=12cm

EF//AB

=>FC/FA=EC/EB=4

=>FC/4=FA/1=20/5=4

=>FC=16cm; FA=4cm

b: DE=căn 5^2-3^2=4cm

=>C BDE=3+4+5=12cm

C CEF/C CAB=CE/CB=20/25=4/5

=>C CEF=4/5*(15+20+25)=4/5*60=48cm

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

25 tháng 12 2023

a: Xét ΔABC có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔABC

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Ta có: FE//AB

D\(\in\)AB

Do đó: FE//AD và FE//BD

Ta có: \(FE=\dfrac{AB}{2}\)

\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

Do đó: FE=AD=DB

Xét tứ giác ADEF có

FE//AD

FE=AD

Do đó: ADEF là hình bình hành

Hình bình hành ADEF có \(\widehat{FAD}=90^0\)

nên ADEF là hình chữ nhật

=>AE=DF

Xét tứ giác BEFD có

FE//BD

FE=BD

Do đó: BEFD là hình bình hành

b: Xét ΔABC có

D,F lần lượt là trung điểm của AB,AC

=>DF là đường trung bình của ΔABC

=>DF//BC và DF=BC/2

Ta có: DF//BC

E,H\(\in\)BC

Do đó: DF//EH

Ta có: ΔHAC vuông tại H

mà HF là đường trung tuyến

nên HF=FA

mà FA=ED(ADEF là hình chữ nhật)

nên HF=ED

Xét tứ giác EHDF có EH//DF

nên EHDF là hình thang

Hình thang EHDF có ED=HF

nên EHDF là hình thang cân

c: Xét tứ giác AECI có

F là trung điểm chung của AC và EI

=>AECI là hình bình hành

=>AI//CE

mà E\(\in\)CB

nên AI//CB

Xét tứ giác BIKE có

F là trung điểm chung của BK và IE

=>BIKE là hình bình hành

=>IK//EB

mà E\(\in\)BC

nên IK//BC

Ta có: AI//BC

IK//BC

AI,IK có điểm chung là I

Do đó: A,I,K thẳng hàng