Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 15^2+20^2=25cm
EC=25-5=20cm
ED//AC
=>BD/DA=BE/EC=1/4
=>BD/1=DA/4=15/5=3
=>BD=3cm; DA=12cm
EF//AB
=>FC/FA=EC/EB=4
=>FC/4=FA/1=20/5=4
=>FC=16cm; FA=4cm
b: DE=căn 5^2-3^2=4cm
=>C BDE=3+4+5=12cm
C CEF/C CAB=CE/CB=20/25=4/5
=>C CEF=4/5*(15+20+25)=4/5*60=48cm
Lời giải:
a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:
\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)
Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$
$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.
Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)
Vậy ta có đpcm.
b)
Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$
$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$
Mặt khác:
$FN\parallel AC\Rightarrow FN\parallel AE(2)$
$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$
Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$
Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)
c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:
$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$
$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$
Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm.
a: Xét ΔABC có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔABC
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Ta có: FE//AB
D\(\in\)AB
Do đó: FE//AD và FE//BD
Ta có: \(FE=\dfrac{AB}{2}\)
\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
Do đó: FE=AD=DB
Xét tứ giác ADEF có
FE//AD
FE=AD
Do đó: ADEF là hình bình hành
Hình bình hành ADEF có \(\widehat{FAD}=90^0\)
nên ADEF là hình chữ nhật
=>AE=DF
Xét tứ giác BEFD có
FE//BD
FE=BD
Do đó: BEFD là hình bình hành
b: Xét ΔABC có
D,F lần lượt là trung điểm của AB,AC
=>DF là đường trung bình của ΔABC
=>DF//BC và DF=BC/2
Ta có: DF//BC
E,H\(\in\)BC
Do đó: DF//EH
Ta có: ΔHAC vuông tại H
mà HF là đường trung tuyến
nên HF=FA
mà FA=ED(ADEF là hình chữ nhật)
nên HF=ED
Xét tứ giác EHDF có EH//DF
nên EHDF là hình thang
Hình thang EHDF có ED=HF
nên EHDF là hình thang cân
c: Xét tứ giác AECI có
F là trung điểm chung của AC và EI
=>AECI là hình bình hành
=>AI//CE
mà E\(\in\)CB
nên AI//CB
Xét tứ giác BIKE có
F là trung điểm chung của BK và IE
=>BIKE là hình bình hành
=>IK//EB
mà E\(\in\)BC
nên IK//BC
Ta có: AI//BC
IK//BC
AI,IK có điểm chung là I
Do đó: A,I,K thẳng hàng