K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

(Bạn tự vẽ hình nha)

a) Câu này kêu tính BC

Xét tam giác ABC vuông tại A có:

AB^2 + AC^2 = BC^2 (pytago)

4^2 + 4^2      = BC^2

 32               = BC^2

=> BC = \(\sqrt{32}\approx\)5,7 (cm)

b) Ta có tam giác ABC cân tại A

=> AD vừa là đường cao vừa là trung tuyến

=> D là trung điểm BC

c) Ta có tam giác ABC vuông tại A

=> AD = 1/2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)

Mà: DC = 1/2 BC (D là trung điểm BC - cmt)

=> AD = DC

=> tam giác ADC cân tại D

Vì thế nên DE vừa là đường cao vừa là trung tuyến

=> E là trung điểm AC

Ta có: tam giác ADC vuông tại D 

=> DE = 1/2 AC (Trong tam giác vuông, đường trung tuyến...)

Mà: AE = 1/2 AC (vì E là trung điểm AC - cmt)

=> ED = AE

=> tam giác ADE cân tại E

Mà góc DEA = 90 độ

=> Tam giác ADE vuông cân

d) Ta có: AE = ED = 1/2 AC = 1/2 . 4 = 2 (cm)

Xét tam giác ADE vuông tại E có:

AE^2 + DE^2 = AD^2

2^2 + 2^2      = AD^2

8                  = AD^2

=> AD = \(\sqrt{8}\approx\)2,8 (cm)

20 tháng 1 2017

Mình chịu câu b

28 tháng 1 2018

Giải

a) Áp dụng định lí Pytago ta có:

BC=√AB2+AC2

<=> BC= √42+42

<=>BC=4√2(cm)

b) Ta có: AD là đường cao đồng thời là đường trung tuyến ứng với cạnh huyền BC của tam giác ABC

<=>DB=DC

Hay D là trung điểm của BC

c) Áp dụng hệ thức lượng trog tam giác có:

AB.AC=BC,AD

<=>4.4=4√2.AD

<=>AD= 2√2(cm)

Ta có: DC=4√22=2√2(cm)

Vì AD=DC nên tam giác ADC là tam giác vuông cân tại D

Ta có: AC=4(cm) (Áp dụng định lí Pytago trong tam giác ADC)

AE= 42=2(cm) (DE là đường cao đồng thời là trung tuyến của tam giác ADC)

Áp dụng hệ thức lượng ta có: DE=2√2.2√24=2(cm)

Do AE=DE mà góc AED bằng 90 độ

Nên tam giác AED vuông cân tại E

d) Câu trên tớ đã tính AD= 2√2(cm)

Mình giải hơi tắt 1 tí. Bạn thông cảm nhé. :)))

5 tháng 3 2018

bạn tự vẽ hình nha

a) Áp dụng định lí Py-ta-go trong tam giác ABC vuông tại A ta có:BC2=AC2+AC2=>BC2=42+42=>BC2=32=>BC=\(\sqrt{32}\)(cm) Vậy BC=

\(\sqrt{32}\)(cm)                                                                                                                                                                                                      b)Xét tam giác ABD và tam giác ACD có :góc ADB=góc ADC=90 độ

                                                                           AD là cạnh chung

                                                                             AB=AC(vì tam giác ABC cân ở A)

                                                      Do đó tam giác ABD=tam giác ACD(cạnh huyền-cạnh góc vuông)

                                                                =>BD=CD(2 cạnh tương ứng)

Mà điểm D nằm giữa 2 điểm C và B nên D là trung điểm của đoạn thẳng BC

c)Trong tam giác ABC vuông tại A có D là trung điểm của cạnh BC nên AD là trung tuyến ứng với cạnh huyền=>AD=BD=CD

=>tam giác BAD cân ở D =>góc DAE=góc DBE

Xét tam giác DAE và tam giác BED có: góc DAE=góc DBE(chứng minh trên)

                                                              góc DEA=góc BED=90 độ

                                                                AD=BD

                                         =>tam giác DAE= tam giác BED (cạnh huyền-góc nhọn)

                                       =>AE=ED( 2 cạnh tương ứng)

=>tam giác AED cân ở E mà DE vuông góc với AB nên tam giác AED là tam giác vuông cân

d)Theo câu a BC=\(\sqrt{32}\)(cm)mà D là trung điểm của BC nên BD=CD=BC/2=\(\sqrt{32}\)/2=2\(\sqrt{2}\)(cm)

THeo câu c AD=CD=BD nên AD=\(2\sqrt{2}\)cm

5 tháng 3 2018

chọn giùm mình nha mình mới tham gia nên không biết sử dụng để vẽ hình thông cảm

23 tháng 5 2018

a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có

BC^2=AB^2+AC^2

=>BC^2=4^2+3^2

=>BC^2=16+9=25

=>BC=căn25=5 (cm)

vậy,BC=5cm

b)Xét tam giác ABC và AED có

AB=AE(gt)

 là góc chung

AC=AD(gt)

=>tam giác ABC=tam giác AED(c-g-c)

Xét tam giác AEB có:Â=90*;AE=AB

=>tam giác AEB vuông cân tại A

Vậy tam giác AEB vuông cân

c)Ta có EÂM+BÂM=90*

      mà BÂM+MÂB=90*

=>EÂM=MÂB

mà MÂB=AÊD(cm câu b)

=>EÂM=AÊD hay EÂM=AÊM

xét tam giác EAM có: EÂM=AÊM(cmt)

=>tam giác EAM cân tại M

=>ME=MA                  (1)

Ta có góc ACM+CÂM=90*

mà BÂM+CÂM=90*

=>góc ACM=BÂM

mà góc ACM=góc ADM( cm câu b)

=>góc ADM=DÂM

Xét tam giác MAD có góc ADM=DÂM(cmt)

=>tam giác ADM cân tại M

=>MA=MD                   (2)

 Từ (1) và (2) suy ra MA=ME=MD

ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền

=>MA=1/2ED

=>MA là đg trung tuyến ứng với cạnh ED

Vậy MA là đg trung tuyến của tam giác ADE

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

22 tháng 3 2022

A B C D E F

a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :

    \(BD=DC\)

     \(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)

     AB= AC

=>  \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)

b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao

=> \(AD\perp BC\)

*Nếu chx học cách trên thì bạn xem cách dưới đây"

Vì  \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)

=> \(AD\perp BC\)

c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :

\(\widehat{EBD}=\widehat{FCD}\)

\(BD=CD\)

=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)

d) Vì D là trung điểm của BC nên  \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)

Xét \(\Delta ADC\) vuông tại D có :

\(AC^2=AD^2+DC^2\)

\(100=AD^2+36\)

\(AD^2=100-36\)

\(AD^2=64\)

AD=8 cm